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Fig. 1: With our approach, ray tracing and rasterization become almost identical with respect to primary rays. Now rasterization can directly
render to non-planar viewports using parabolic and latitude-longitude parameterizations (left images), and we can transfer rendering consistency
and efficient anti-aliasing schemes from rasterization to ray tracing. The center image shows the Venice scene consisting of 1.2 million triangles.
Our 3D rasterization bridges both approaches and allows us to explore rendering methods in between. The right images show the number of
edge function evaluations per pixel for two different 3D rasterization methods (3DR binning and 3DR full, see Sect. 5).

ABSTRACT

Ray tracing and rasterization have long been considered as two fun-
damentally different approaches to rendering images of 3D scenes,
although they compute the same results for primary rays. Rasteriza-
tion projects every triangle onto the image plane and enumerates all
covered pixels in 2D, while ray tracing operates in 3D by generat-
ing rays through every pixel and then finding the closest intersection
with a triangle. In this paper we introduce a new view on the two
approaches: based on the Plücker ray-triangle intersection test, we
define 3D triangle edge functions, resembling (homogeneous) 2D
edge functions. Then both approaches become identical with re-
spect to coverage computation for image samples (or primary rays).
This generalized “3D rasterization” perspective enables us to ex-
change concepts between both approaches: we can avoid applying
any model or view transformation by instead transforming the sam-
ple generator, and we can also eliminate the need for perspective
division and render directly to non-planar viewports. While ray
tracing typically uses floating point with its intrinsic numerical is-
sues, we show that it can be implemented with the same consistency
rules as 2D rasterization. With 3D rasterization the only remaining
differences between the two approaches are the scene traversal and
the enumeration of potentially covered samples on the image plane
(binning). 3D rasterization allows us to explore the design space
between traditional rasterization and ray casting in a formalized
manner. We discuss performance/cost trade-offs and evaluate dif-
ferent implementations and compare 3D rasterization to traditional
ray tracing and 2D rasterization.

Index Terms: I.3.3 [Computer Graphics]: Picture/Im-
age Generation—Display algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—
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1 INTRODUCTION

The two main algorithms used in computer graphics for generat-
ing 2D images from 3D scenes are rasterization [30] and ray trac-
ing [3, 40]. While they were developed at roughly the same time,
rasterization has quickly become the dominant approach for interac-
tive applications because of its initially low computational require-
ments (no need for floating point in 2D image space), its ability
to be incrementally moved onto hardware, and later by the ever
increasing performance of dedicated graphics hardware. The use
of local, per-triangle computation makes it well suited for a feed-
forward pipeline. However, handling of global effects, such as re-
flections, is intricate.

Ray tracing, on the other hand, works directly in 3D world space,
typically requiring floating point operations throughout rendering,
with recursive visibility queries for global effects, which results
in largely unpredictable memory accesses. Software-only ray trac-
ing for interactive applications was assumed to be non-competitive
in the beginning, such that ray tracing research essentially ceased
during the 1990s. However, recent interactive ray tracing ap-
proaches achieved significant performance gains on both CPUs and
GPUs [1, 6, 27, 28, 33, 39, 43] and ray tracing has been efficiently
implemented in hardware [42].

In this paper we focus on primary (camera) rays, i.e. rays with a
common origin or parallel rays, because only these are also covered
by rasterization. We consider secondary rays and efficient global il-
lumination algorithms, such as path tracing or photon mapping, as
orthogonal to our approach. Even for the simple case of primary
rays, rasterization and ray tracing seemed to be fundamentally dif-
ferent. In this paper, we show that a different view on both algo-
rithms based on a slight generalization – rasterizing through 3D
edge functions defined in world space instead of 2D edge functions
on the image plane – we can fold ray casting, i.e. ray tracing of
primary rays, and rasterization into a single 3D rasterization algo-
rithm. In this unified context we can now apply techniques that
have been limited to one approach also in the context of the other.

In this new setting, the only difference between the two algorithms
is the way potentially visible triangles and potentially covered im-
age samples are enumerated. Traditionally, both approaches use
different acceleration structures, e.g. ray tracing uses a 3D spa-
tial index structure for approximate front to back traversal of the
scene with implicit frustum and occlusion culling to only enumer-
ate potentially visible triangles for coverage testing, and rasteriza-



tion uses a 2D grid of image samples that enables fast (hierarchical)
identification of samples that may be covered by a triangle (cf. bin-
ning). Combinations of both worlds have been introduced before,
e.g. Benthin et al. [4] use parallel traversal and binning in a multi-
frustra ray tracing setting, and Hunt et al. [15] describe a continuum
of visibility algorithms between tiled z-buffer systems and ray trac-
ing. 3D rasterization enables us to freely explore many more combi-
nations in a formalized manner and analyze the different trade-offs
between these techniques. Recently, Laine and Karras [19] demon-
strated that software 2D rasterization algorithms can be efficiently
implemented on GPUs. We believe that their work creates a basis
for rendering using unified 3D rasterization.

2 PREVIOUS WORK

Rasterization is currently the dominant rendering technique for real-
time 3D graphics and is implemented in almost every graphics chip.
The well-known rasterization pipeline operates on projected and
clipped triangles in 2D. The core of the rasterization algorithm, cov-
erage computation, determines for all pixels (and possibly several
sub-samples in each pixel) whether they are covered by a given tri-
angle. The coverage test typically uses linear 2D edge functions
in image space, one for each triangle edge, whose sign determines
which side of an edge is inside the triangle [30]. These functions
can be evaluated in parallel, and hierarchically, to quickly locate
relevant samples on the screen. Many extensions to this basic
algorithm have been proposed including different traversal strate-
gies [23], the hierarchical z-buffer [10], efficient computation of
coverage masks [9], hierarchical rasterization in homogeneous co-
ordinates [26], and the irregularly sampled z-buffer [16].

The idea of ray tracing was introduced to graphics by Appel [3],
while Whitted [40] developed the recursive form of ray tracing.
Since then, the two main trends in ray tracing have been the de-
velopment of physically correct global illumination algorithms (see
the overview in [29]), and trying to reach performance comparable
to rasterization. The latter is most often achieved by simultaneously
tracing packets of coherent rays to increase performance on parallel
hardware [39]. Recent approaches use large ray packets and opti-
mized spatial index structures [1], such as kd-trees [33], bounding
volume hierarchies (BVHs) [6, 27, 36], interval trees [42, 35], and
3D grid structures [17, 37]. A recent survey [38] gives an overview
of construction and traversal algorithms for spatial index structures
used for ray tracing.

While rasterization has benefited tremendously from being imple-
mented in dedicated hardware, ray tracing was almost exclusively
limited to software implementations, even when executed on the
same graphics hardware [14, 31, 32] (we consider GPUs as pro-
grammable hardware dedicated to graphics that runs software im-
plemented as shaders). However, the increasing parallelism and
programmability of graphics processors make it likely that render-
ing algorithms will be mostly implemented in software in the fu-
ture [19, 22, 34].

Implementations of specialized rasterization algorithms have been
presented recently. Fatahalian et al. [5] discuss methods to effi-
ciently rasterize micropolygons for high-quality rendering. Loop
and Eisenacher [21] present a sort-middle rasterizer implemented
in CUDA. Two papers are most closely related to this paper: Ben-
thin et al. [4] perform synchronized traversal and binning in a multi-
frustra tracing approach. Hunt et al. [15] describe a continuum of
visibility algorithms between tiled z-buffer systems and ray tracing
by introducing acceleration structures that are specialized for rays
with specific origins and directions. Our work goes further than
both, as we fold ray casting and rasterization into a single algo-
rithm enabling many more optimizations as well as exploration of
the continuum of rendering algorithms between the two.

3 FROM 2D TO 3D RASTERIZATION

In the following we first briefly review the traditional 2D rasteriza-
tion (2DR) technique [23, 30, 34] as it is implemented in current
graphics hardware, before making the step to 3D. We then discuss
the benefits and illustrate new possibilities.

3.1 2D Rasterization

Any linear function, u, on a triangle in 3D, e.g. colors or texture
coordinates, obeys u = aX + bY + cZ + d, with (X ,Y,Z)T being
a point in 3D, and the parameters a, b, and c can be determined
from any given set of values defined at the vertices [26]. Assuming
canonical eye space – where the center of projection is the origin,
the view direction is the z-axis, and the field of view is 90 degrees
– dividing this equation by Z yields the well-known 2D perspective
correct interpolation scheme [12] from which we observe that u/Z
is a linear function in screen-space. During rasterization both u/Z
and 1/Z are interpolated to recover the true parameter value, u.

We can now define three linear edge functions in the image plane
for every triangle (Figure 2): Their values are equal to zero on two
vertices and to one on the opposite vertex [26]. A pixel is inside
the triangle if all three edge functions are positive at its location
and thus coverage computation becomes a simple evaluation of the
three edge functions, which is well suited for parallel architectures.
Hierarchical testing of pixel regions for triangle coverage, called
binning [34], is a major factor for rendering performance. Typical
implementations use either a quad-tree subdivision in image space
starting from the entire screen or the triangle’s bounding box, or
they locate relevant parts by sliding a larger bin over the screen,
followed by further subdivision or per-sample evaluation. Binning
is analogous to culling a triangle from a frustum of primary rays in
ray tracing.

Note that other rasterization algorithms exist, but hierarchical ras-
terization has proven to be the most efficient and hardware-friendly
algorithm and we thus restrict our discussion to it.

3.2 3D Rasterization

Testing whether a pixel sample is covered by a 2D triangle is equiv-
alent to testing if a ray, beginning at the eye going through that
pixel intersects the triangle. Figure 3a depicts this using the fol-
lowing notation: e is the eye location and the ray goes through
d = d0 + xdx + ydy, for pixel coordinates (x,y), while p0, p1, p2

are the vertices of the triangle.

We can now formulate 3D linear edge functions using the signed
volume method well-known as the Plücker ray-triangle intersection
test [2, 4, 18]. We first consider the triangle formed by the first
edge p0p1 and the eye (see Figure 3b). For notational simplicity
in this explanation, but without loss of generality, we assume that
e is in the coordinate origin, and thus the normal of the triangle
is n2 = p1 × p0. (In practice we use n2 = (p1 − e)× (p0 − p1)
which is mathematically equivalent but numerically more stable for
small triangles.) We define the corresponding 3D edge function as
V2(d) = n2 ·d, which is equivalent to computing the scaled signed

>0

<0
...

p2

p1
p0

p2

p1
p0

Fig. 2: Left: the 2D edge function for the edge p0p2 which can be
evaluated in parallel. A hierarchical search can quickly locate pixels
covered by the triangle (right).
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Fig. 3: 3D edge functions for a triangle (p0,p1,p2) and a ray starting at the eye e going through pixel (x,y) with direction d in world space.
Intersection tests and computation of the barycentric coordinates are based on the signed volumes of the spanned tetrahedra.

volume of the tetrahedron with vertices p0, p1, d, and e (the origin).
The scaling factor of 6 (a factor of 1/6 from tetrahedra volume for-
mula) can be ignored as intersection tests are based on the signs
and ratios of volumes. V2(d) is positive for all d in the half-space
containing p2 (Figure 3c). In analogy we define V0 and V1:

ni = p(i+2) mod 3×p(i+1) mod 3

Vi(x) = ni ·x, with i = 0,1,2. (1)

We denote the scaled volume of the tetrahedron spanned by the en-
tire triangle and the origin by V = p j · n j (for any j = 0..2). To
determine if the triangle is hit by a ray in the positive direction we
only need to consider the signs of the volumes Vi and V . The ray
e+ t ′d, t ′ > 0, hits the triangle if all four volumes have the same
sign. If the sign is positive it hits the triangle’s front face otherwise
it hits the back face.

We can also write the intersection point, td, using barycentric co-
ordinates as td = λ0p0 + λ1p1 + λ2p2 (Figure 3d), which are in
turn defined by the ratio of the scaled signed volumes, Vi, with
λi =Vi(d)/(V0(d)+V1(d)+V2(d)) [18]. Note that we do not need
to compute the ray parameter t to test for intersections or to deter-
mine the barycentric coordinates (see below).

While the above has been widely used in ray tracing already, we can
also compute the derivatives of the 3D edge functions with respect
to screen space, similar to the derivatives of the 2D edge functions.
Not only are dx = ∂d/∂x and dy = ∂d/∂y constant for planar views,
but so are Vi,x = ∂Vi/∂x and Vi,y = ∂Vi/∂y:

Vi(d) = ni ·d = ni · (d0 + xdx + ydy) (2)

Vi,x =
∂Vi(d)

∂x
= ni ·dx and Vi,y =

∂Vi(d)

∂y
= ni ·dy.

Where d0 is the base and dx, dy are the derivatives of ray direction.
These derivatives can be used as in 2D for defining rendering con-
sistency (Section 3.4) and for incremental evaluation of the edge
functions. However, the derivatives of the barycentric coordinates,
λi, are not constant due to the perspective projection. Once an in-
tersection is found we can easily compute t and λi for per-pixel
texturing and shading.

It is important to note that although 3D rasterization is based on
3D edge functions it still requires 2D evaluations only. This is
because the edge evaluations per pixel boil down to computing
Vi(d0) + xVi,x + yVi,y for each edge given a pixel (x,y). Whether
a direct or incremental evaluation is preferred depends on the ren-
derer’s architecture and binning strategy. In our implementations
we used the direct evaluation throughout, as it is more flexible, fully
parallel, and only marginally slower.

Discussion This intersection test is well-known as the Plücker
test in ray tracing, which has been utilized by Woop [41] who
pointed out the equivalence of Plücker tests and 2D homogeneous
rasterization. Despite the fact that our results resemble 2D homoge-
neous rasterization (Fig. 10 provides a comparison chart), it should
be noted, that homogeneous 2D rasterization requires transforming

triangle vertices explicitly into the camera space. This step can
be omitted in 3D rasterization, because viewing and perspective is
folded directly into triangle setup. This might seem cumbersome
for traditional rasterization pipelines, but is an inherent benefit for
the formulation of the 3D rasterization continuum (Section 4).

3.3 Homogeneous Coordinates

The traditional rasterization pipeline uses homogeneous coordi-
nates primarily for perspective transformations, but other geomet-
ric calculations can be also expressed using these coordinates. 3D
rasterization, as described above, works in Euclidian space and thus
vertex coordinates have to be dehomogenized first.

While it is possible to define the corresponding operations also us-
ing homogeneous coordinates [11], they are more expensive. As
ray tracing has never used homogeneous coordinates without ill ef-
fects, we see little disadvantage in not supporting them for transfor-
mations. Note that projective texturing is completely independent
from the rasterization of geometry. 3DR can handle homogeneous
texture coordinates and projective texturing without any limitations.

Homogeneous coordinates can also be used to handle orthographic
projections by moving the camera to infinity along the projection
direction. In 3D rasterization we handle this case explicitly by com-
puting the cross product between the projection direction dp and
the vector along the edge: ni = dp× (p(i+1) mod 3−p(i+2) mod 3).

3.4 Rasterization Consistency

One important feature of 2D rasterization is that consistency rules
can be defined. They ensure that each pixel intersecting adjacent
triangles is rasterized exactly once. This is important to avoid miss-
ing an intersection with either triangle along shared edges, or incor-
rect blending when rendering with semi-transparent materials and
accounting for intersections with both triangles. A common rule,
which is used by OpenGL and Direct3D, is the “top-left filling con-
vention” with the pixel center as the decisive point. If it resides on
an edge then it belongs to the triangle to its right, or the one below
in case the edge is horizontal [24].

The Plücker test as described by Amanatides and Choi [2] ensures
consistency by counting rays hitting edge/vertex towards all trian-
gles sharing the edge/vertex. While this works well for opaque ma-
terials, it can cause artifacts with semi-transparent materials. To
ensure only one triangle is hit by each ray, we adopt the same con-
sistency rules as 2D rasterization.

We determine the triangle a pixel belongs to based on the barycen-
tric coordinates. If a pixel center lies on a triangle edge, i.e. λi = 0,
we base the decision on the derivatives of Vi. For an edge, as shown
in red in Fig. 4a, the derivative Vi,x is positive for one triangle only,
and we assign the pixel to that triangle. If the edge is horizontal
(Vi,x = 0), we use the derivative Vi,y as the secondary criterion of
the top-left convention (Fig. 4b). Similarly, we decide for pixels
centered on vertices: The pixel belongs to the triangle to its right
(Fig. 4c), or to the one below if it resides on a horizontal edge,



i.e. it belongs to the triangle for which (Vi,x > 0∧V j,x > 0)∨(Vi,x =
0∧V j,x > 0), with λi = λ j = 0. Note that both derivatives are zero
only for two edges collapsed to a point and thus for degenerated
triangles which should not be rasterized at all.

So far, no fully consistent ray-triangle intersection algorithm has
been known for ray tracing: A ray-triangle intersection is assumed
to happen if 0 ≤ λi ≤ 1 for the three barycentric coordinates. This
can lead to inconsistencies at edges or vertices shared between ad-
jacent triangles. Today, the most widely used solution is the use of
edge-based intersection algorithms (like the original Plücker test)
that avoid most issues but cannot handle samples that intersect a
point or edge exactly. The use of edge derivatives in 3D rasteriza-
tion allows us to transfer the consistency rules from rasterization to
ray tracing and enables fully consistent rendering.

Numerics Using these consistency rules we did not observe
any sampling problems, neither with direct nor with incremental
evaluation (for reasonably small bin sizes). Note that the formula-
tions for computing the normal vector ni are mathematically sym-
metric in the vertices. However, due to numerics, commutative op-
erations do not necessarily yield the same results, e.g. (e−b)×(a−
b) 6=−(e−a)×(b−a). This is because of matching the exponents
that takes place in floating point addition and subtraction. Although
rendering artifacts are very rare with 3D rasterization (as they are
with ray tracing), this may lead to inconsistencies in edge function
evaluations of adjacent triangles.

One solution, rather practical for hardware implementations, is to
order vertices consistently using any criterion, e.g. always choos-
ing the one with the smaller x-component as the first one in the
computation. An alternative is to compute the cross-product for the
normal vectors using the edge midpoints, which yields (e− (a+
b)/2)× (a− b) = −(e− (b+ a)/2)× (b− a). This approach is
cheaper for software implementations compared to the consistent
ordering. This ensures bitwise identical and thus consistent results
even when using floating point arithmetic.

3.5 Non-planar Viewports

The key to efficient rendering is a cheap computation of Vi for
quickly testing for intersections and computing barycentric coor-
dinates. We will discuss the hemispherical view obtained from the
well-known parabolic mapping [13] as an example. The paraboloid

function is f (x,y) = 1
2 − 1

2 (x
2 +y2), with x2 +y2 ≤ 1, the direction

vectors of the hemispherical viewport are d = (x,y, f (x,y))T , and

the ray origin is e = (0,0,0)T . Both d and Vi(d) = ni · d can be
evaluated directly, but as they are quadratic functions we can also
use a double incremental scheme to compute their values. For an
incremental evaluation of a 3D edge function, Vi, we initialize the
computation for the pixel, (x0,y0), and the corresponding direction
vector, d0, with V=Vi(d0), Vx =Vi,x(d0) and Vy =Vi,y(d0). When
going from a pixel, (x,y), to another pixel, (x+∆x,y+∆y), we up-
date:

V ← V+Vi(∆x,∆y)− nz

2
+∆x(Vx−nz)+∆y(Vy−nz)

Vx ← Vx−nx∆x and Vy← Vy−ny∆y. (3)

Note that parabolic rasterization has also been demonstrated with
GPUs [7] by determining 2D bounding shapes for the curved tri-
angles followed by per-pixel ray-triangle intersections. 3D raster-
ization naturally handles non-linear projections (Figure 1 shows
two images generated with our method), but hierarchical binning
is based on the assumption that edges are straight lines between the
projected vertices (Figure 5a). We avoid computing a 2D bounding
shape, as in [7], as this requires an additional set of edge functions

a)

V   >0i,x
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V   =0i,x

V   <0i,y

c)

V   >0i,x

V   >0j,x

Fig. 4: Rasterization consistency: We adopt the top-left filling con-
vention from OpenGL and Direct3D for 3D rasterization based on the
barycentric coordinates and the derivatives of Vi.

in image space. Instead we propose to modify the locations where
the edge functions are evaluated for binning. This is based on sim-
ple observations: The parabolic projection of a line p0p1 is a circle
arc with radius r = ||n−1

z || ≥ 1, with n = (p0×p1)/||p0×p1||; the

center is at (nx/nz,ny/nz)
T [7]. A bin, of size m×m, fails to detect

the intersection of a convex edge if the circle intersects one side of
the binning region only. We can compute the maximum penetration
depth of the circle which would still not be detected (Figure 5b) by

p = r−
√

r2−m2/4 (a computationally simpler, tight bound for p

is p≤m(1−
√

3/2), as r≥ 1). By virtually shifting the bin corners
towards the circle center by p we obtain a conservative intersection
test with the curved edge. Note that we only need to shift one side
of the bin, determined by the largest magnitude coordinate of the
vector s going from the bin center to the circle center. Lastly, if
r < m/2 the circle might lie entirely inside the bin and we always
need to split and recursively test the bin for triangle coverage.

We estimated the overhead for binning with this algorithm for
paraboloid mapping by rendering randomly generated triangles.
Approximately 18% of the bins have been refined, although they did
not intersect a triangle. We used the conservative upper bound for
p precomputed for fixed bin sizes, thus introducing only marginal
computational overhead. Similar binning strategies can be devel-
oped for other non-linear projections by geometric reasoning.
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Fig. 5: Binning evaluates the edge functions at the four corners (red
squares) and thus misses intersections with curved edges which are
circular arcs (a). We compute the maximum penetration of convex
edges (b), and shift the locations where each of the edge functions
is evaluated (c).

4 THE 3D RASTERIZATION CONTINUUM

With the unified evaluation of coverage for both ray tracing and ras-
terization via 3D rasterization, scene traversal and sample binning
remain the only differences in handling primary rays.

Scene Traversal The design space for scene traversal is spanned
by brute-force rasterization that simply processes every triangle in
the scene on one side and traditional ray tracing of individual rays
on the other one. In the latter case performance is optimized by
building a spatial index structure, e.g. [39], and only computing cov-
erage information (intersections) with triangles that are contained in
cells intersected by the rays.

Note that the traditional rasterization pipeline does not comprise
scene traversal, even if the scene data might already be stored on
the graphics hardware, e.g. as OpenGL vertex buffer objects. How-
ever, frustum culling (using the entire view frustum, or smaller
view frusta aligned with tiles for tile-based rasterization) are typi-
cally used to prevent triangles from being processed by the pipeline.



ray frustum
BVH node

surface

intersections
ray frustum F

F1
F2

F4
F3

frustum culled

occlusion culled

center ray

(b) split frustum(a) (c) splitting &

      recursive

      traversal

(d) generate 

      samples

Fig. 6: The continuous rendering algorithm traverses frusta through a spatial index structure and determines the frustum samples covered by
triangles. It consists of three operations: Frustum and occlusion culling (a), frustum splitting (b, c), and sample generation (d).

Newer OpenGL extensions provide means to query occlusion infor-
mation from the GPU, or perform conditional submission of scene
content, leaving the scene traversal to the application. A unified ren-
dering approach like 3D rasterization suggests that scene traversal
should be integrated more tightly with the core rendering algorithm
on the GPU.

Binning Once a triangle has been chosen for rendering, we must
efficiently identify the image samples/rays that it covers. For tradi-
tional ray tracing only triangles that are likely to be intersected are
enumerated by the traversal. However, in case of larger frusta, a
triangle may only cover a small fraction of the samples and it may
be advantageous to use binning to accelerate finding the covered
ones. For the same reason, rasterization has always used binning to
quickly locate the covered samples on the screen.

traverse( frustum F, node N ) {
if ( isOccluded or isOutside ) return; // Figure 6a
if ( splitFrustum ) { // Figure 6b
split F into sub-frusta Fi // Figure 6c
foreach ( Fi ) traverse( Fi, N )

} else

if ( generateSamples ) {
rasterize( N, binning ) // Figure 6d

} else {
foreach ( child of N )
traverse( F, child of N )

} }

Fig. 7: This continuous rendering algorithm allows us to explore the
continuum of methods between rasterization and ray tracing. Note
that the rasterize function can be replaced by a ray-triangle inter-
section, or 2D rasterization for linear projections.

Combined Use of Traversal and Binning A generic formulation
of combined traversal and binning (not explicitly aligned) is shown
as pseudo-code in Figure 7. Here F is a frustum and N is a node of
the spatial index structure (typically starting with the entire view-
port and the root node, respectively). The blue keywords denote
oracles which control the behavior of the algorithm, and allow us to
reproduce the aforementioned rendering algorithms and to explore
new avenues.

For example, the algorithm behaves like a standard 2D rasterizer if
we set generateSamples and binning to true, and all other
oracles to false. To obtain a coherent ray tracer, isOccluded and
isOutside are activated to perform a test that determines if a
spatial index node intersects a ray frustum or is occluded by other
geometry; splitFrustum is false; the generateSamples or-
acle controls the traversal of the spatial index structure and is true
for leaves of the spatial index only, where it initiates the per-sample
coverage computation instead of rasterizing the triangles.

This approach allows us to flexibly combine concepts from both
ends of the continuum and use occlusion and frustum culling based
on the spatial index hierarchy with binning at the coverage level us-
ing the sample grid additional 2D acceleration structure. We also
experiment with adaptively splitting ray frusta, which can be bene-
ficial for scenes with an irregular distribution of details.

More distinct combinations from this continuum have already been
explored. For example, Benthin et al. [4] build on a 16-wide SIMD
architecture traversing 16 frusta in parallel through a scene acceler-
ation structure, each bounding a set of highly coherent rays. They
also cull back-facing and missed triangles prior to ray-triangle in-
tersection computation. We believe that our formulation of the full
continuum allows us to explore other promising algorithms in a sys-
tematic way.

Anti-aliasing Many renderers use super-sampling for high-quality
image synthesis, but modern graphics hardware goes one step fur-
ther and decouples coverage sampling (determining what fraction
of a pixel is covered by a triangle) from shading computation.
3DR can be used with any such technique and we added multi-
sampled anti-aliasing (MSAA) and anti-aliasing with coverage sam-
ples (CSAA) [25] to our framework (see Figure 8).

Anisotropic Texture-filtering On current GPUs screen-space
derivatives for texture filtering are typically approximated
by simple differencing in 2 × 2 pixel blocks (e.g. called
ddx coarse/ddy coarse in Direct3D HLSL intrinsics). We can use
exactly the same approach in 3DR without any additional cost com-
pared to 2D rasterization. Exact derivatives would be marginally
more expensive than with 2DR requiring one additional dot product
per interpolated component per triangle; the per-pixel cost remains
identical to 2DR.

Fig. 8: We integrated anti-aliasing techniques into 3D rasterization:
The rendering on the left uses the 3DR full algorithm (see Sect. 5)
without any anti-aliasing, using 16×MSAA (center) takes 11× longer,
while CSAA with 4 shading and 12 coverage samples (right) takes
only 4.3× longer. Shading is computed using recursive ray tracing
with 1 shadow ray, and 1 reflection ray for every sample.

5 EVALUATION, RESULTS AND DISCUSSION

For a meaningful evaluation of 3D rasterization (3DR) we con-
ducted numerous experiments running on CPUs and GPUs, and
compare 3DR to highly optimized 2D rasterization (2DR) and ray
tracing implementations.

First, we developed a prototype CPU implementation of 3D raster-
ization and all components required to explore the continuum out-
lined above. In order to assess the performance of the resulting ren-
dering algorithms we compare this implementation to state-of-the-
art highly coherent ray tracing on CPUs [36] implemented in RT-
fact [8], and to an SSE hand-optimized 2D rasterization algorithm.
For the latter we implemented two versions, one evaluating all pix-
els inside a triangle’s 2D bounding box (2DR brute-force), and one
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Fig. 9: Top graph: measured rendering time relative to 2DR brute-force (> 1 means slower). Bottom graph: Instructions per frame relative to 2DR
brute-force computed from the instruction counts given in Figure 10 and the number of triangle setups and edge evaluations during rendering.
The dark shade in each bar indicates the fraction of instructions due to triangle setups. The numbers in brackets for each scene are absolute
performance and instructions per frame for 2DR brute-force.

with hierarchical binning starting from the triangle’s bounding box
and using early-z-culling (2DR binning) with a w-buffer. Please
note that all our implementations use w-buffering for depth testing
and do not rely on interpolated z-values. We use 2DR brute-force
as our reference method.

In between these two extremes, we examined the following sample
points of the continuum:

• Pure 3D rasterization with brute-force evaluation of all pixels
inside a triangle’s bounding box (3DR brute-force).

• Pure 3D rasterization with early-z-culling (using a hierarchi-
cal w-buffer) and binning identical to the 2DR binning strat-
egy (3DR binning).

• 3DR with frustum culling: We subdivide the screen into frusta
of 2562 pixels and use a bounding volume hierarchy (BVH) to
facilitate view frustum culling. 3D rasterization uses binning
when leaf-nodes of the BVH are selected for rendering (3DR
frustum cull).

• 3DR without binning, but instead using occlusion culling and
frustum splitting (3DR frustum split): A frustum is recursively
split, down to 82 pixels, if its center ray misses a BVH node’s
bounding box (Figure 6b, c) or if the box is small compared
to the frustum.

• Combining the two previous options using occlusion culling
and adaptive frustum splitting first, followed by 3DR with bin-
ning and early-z-culling (3DR full).

Figure 9 summarizes our benchmarks. For each frame in the inset
we provide time in milliseconds and number of instructions it takes
our reference method, 2DR brute-force, to render the frame. The
upper bar graph then shows relative times for each method, in a
CPU software implementation (anti-aliasing turned off). The lower

bar graph shows relative instructions per frame for each method,
to allow a prediction of hardware speeds. Instructions per frame
are computed by counting the number of triangle setups and edge
evaluations and multiplying them by scalar instruction count from
Figure 10. Where required, we used BVHs constructed off-line us-
ing the SAH metric [36], taking between 1 second and 1 minute for
our test scenes. Building such acceleration structures for dynamic
scenes is an active, yet orthogonal, research area; for recent work
see Lauterbach et al. [20].

We observe that 3DR brute-force is faster than 2DR brute-force in
most scenes, with the instructions per frame closely matching the
actual speedup. The 2DR brute-force is faster only in the Sponza
and the Conference scenes. Here, for a few triangles, the 3DR can-
not determine tight screen-space bounding boxes, and falls back
to testing on the whole screen. The overhead of hierarchical bin-
ning (3DR binning and 2DR binning) apparently does not amor-
tize in our CPU implementations for the average triangle size in
our test scenes. 3DR with BVHs achieves a performance compara-
ble to the highly optimized RTfact implementation and 3DR frus-
tum split/3DR full even beat it for the Buddha and Teapots scenes,
which exhibit large numbers of very small triangles. This is due to
the adaptive frustum splitting; early-z culling in 3DR full provides
an additional small speed-up for the Teapots2 scene.

In Figure 10 we show a side-by-side comparison of 3D rasteriza-
tion, traditional 2D rasterization, and homogeneous 2D rasteriza-
tion [26]. The pseudo-code is laid out for scalar computing archi-
tectures and we report the number of scalar instructions required
for setup and per-pixel evaluation. On scalar architectures, factor-
ing out of constants is beneficial, and our 2D rasterization takes
advantage of such an optimization, as we know w = 1 for all pro-
jected vertices (2nd for-loop). However, such optimizations can be
impedimental on architectures that support vector instructions [19].



2D Rasterization 2D Homogeneous Rasterization (Olano [26]) 3D Rasterization

Setup Input

vertices: v0,v1,v2

projection matrix: MP

Setup Input

vertices: v0,v1,v2

projection matrix: MP

Setup Input

vertices: v0,v1,v2

camera: e, d0,dx,dy

for i← 0 to 2 do

v′i←MP ·vi

wi← v′i.w
v′i← v′i/wi

end for →3 RCP, 12 MUL, 36 MADD

for i← 0 to 2 do

ci,x← v′(i+1)%3,y−v′(i+2)%3,y

ci,y← v′(i+2)%3,x−v′(i+1)%3,x

ci,z← v′(i+1)%3,xv′(i+2)%3,y−v′(i+1)%3,yv′(i+2)%3,x

end for →3 SUB, 3 MUL, 3 MADD

D← c0 ·v′0.xyz 1 MUL, 2 MADD

MI ← 1
D
· [c0 c1 c2]

T
1 RCP, 9 MUL

w←
(

1
w0

, 1
w1

, 1
w2

)T

v′0←MP ·v0

v′1←MP ·v1

v′2←MP ·v2

→36 MADD

c0← v1.xyw×v2.xyw 3 MUL, 3 MADD

c1← v2.xyw×v0.xyw 3 MUL, 3 MADD

c2← v0.xyw×v1.xyw 3 MUL, 3 MADD

D← c0 ·v′0.xyz 1 MUL, 2 MADD

MI ← 1
D
· [c0 c1 c2] 1 RCP, 9 MUL

w←MI · (1,1,1)T
6 ADD

n0← (v2− e)× (v1− e)

n1← (v0− e)× (v2− e)

n2← (v1− e)× (v0− e)

→ 9 ADD, 9 MUL, 9 MADD

V ← n0 · (v0− e) 1 MUL, 2 MADD

MI ← [n0 n1 n2]
T · [dx dy d0]

→ 9 MUL 18 MADD

Setup Output

matrix: MI

inverse depth: w

41 MADD, 25 MUL, 3 SUB, 4 RCP = 72 total

1 DP3, 9 DP4, 10 MADD, 5 MOV, 9 MUL,

4 RCP = 39 total

Setup Output

matrix: MI

inverse depth: w

47 MADD, 19 MUL, 6 ADD, 1 RCP = 73 total

1 DP3, 9 DP4, 7 MADD, 3 MOV, 6 MUL,

1 RCP = 27 total

Setup Output

matrix: MI

total volume: V

29 MADD, 19 MUL, 9 ADD = 57 total

10 DP3, 5 MADD, 1 MOV, 3 MUL, 3 ADD

= 22 total

Per-Pixel Operations Per-Pixel Operations Per-Pixel Operations

p← (x,y,1)T

E←MI ·p 6 MADD

if E.x < 0∧E.y < 0∧E.z < 0 then

W ← (w ·E)−1 2 MADD, 1 MUL, 1 RCP

u←W ∗w.x∗E.x 2 MUL

v←W ∗w.y∗E.y 2 MUL

return (u,v,W )T

end if

p← (x,y,1)T

E←MT
I ·p 6 MADD

if E.x < 0∧E.y < 0∧E.z < 0 then

W ← (w ·p)−1
1 RCP, 2 MADD

u←W ∗E.x 1 MUL

v←W ∗E.y 1 MUL

return (u,v,W )T

end if

p← (x,y,1)T

E←MT
I ·p 6 MADD

if E.x < 0∧E.y < 0∧E.z < 0 then

W ← E.x+E.y+E.z 2 ADD

return 1
W
(E.x,E.y,V )T

3 MUL, 1 RCP

end if

8 MADD, 2 MUL, 1 RCP = 14 total

4 CMP, 4 DP3, 1 MOV, 2 MUL, 1 RCP

= 12 total

10 MADD, 3 MUL, 1 RCP = 14 total

4 CMP, 4 DP3, 2 MOV, 1 MUL, 1 RCP

= 12 total

6 MADD, 2 ADD, 3 MUL, 1 RCP = 12 total

4 CMP, 4 DP3, 2 MOV, 1 MUL, 1 RCP

= 12 total

Fig. 10: Costs of 3D rasterization and (homogeneous) 2D rasterization, including perspective correct interpolation of camera space depth and
barycentric coordinates for interpolation: additions (ADD), multiplications (MUL) and reciprocals (RCP). Multiply-add (MADD) operations are
used where possible to replace sequent MUL and ADD operations. Red numbers denote the number of scalar operations, blue denotes the
number of instruction slots when the corresponding implementation is compiled using Direct3D’s HLSL compiler for the vertex/pixel shader 3.0
profiles.

Thus we also report the number of instruction slots when compiling
the code using a 4-wide SIMD architecture using the vertex/pixel
shader 3.0 profiles of Direct3D.

With regard to future programmable graphics hardware, we ran a
“close to the metal” comparison of the basic 2D and 3D rasteri-
zation algorithms. To measure the pure rasterization performance
we implemented both algorithms as Direct3D shaders running on a
GPU and emulate the software-rasterization of triangles by invok-
ing the computation through rendering a full-screen quad. In both
cases a vertex shader carries out the setup (we omitted clipping for
2DR, as most hardware rasterizers do not need to clip often) and a
pixel shader performs per-pixel edge function evaluations and com-
putes perspective correct depth and barycentric coordinates. In or-
der to avoid GPU intricacies and to compare pure rasterization per-
formance we disabled depth-buffering and output all results color-
coded.

We measured performance on an ATI HD5870 rendering at
1920×1200 resolution. For 262144 triangles, 3D rasterization runs
at the same speed as homogeneous 2DR with 465 frames per second
(fps); both slightly outperform 2DR with 464 fps. The same trend
is visible with significantly less primitives: for 144 triangles, the
difference of homogeneous 2DR (2558 fps) and 3DR (2559) is neg-

ligible, while 2DR is roughly 2% slower with 2503 fps. Recall that
2DR normally requires an additional clipping step that we omitted.

Discussion As shown by Woop [41], Olano’s homogeneous
2D rasterization can be further optimized, ultimately resembling
3D raterization. Then per-pixel operations of Woop’s variant and
our 3DR are identical and vertex setup only differs in how perspec-
tive and viewing transformation is applied. While homogeneous
2DR uses matrix transformations pre-hand, 3DR folds projection
and viewing directly into vertex setup.

6 CONCLUSIONS AND FUTURE WORK

Ray tracing and rasterization have long been considered as two dis-
tinct rendering approaches. We showed that by making a slight
change that extends triangle edge functions to operate in 3D, the
two approaches become almost identical with respect to primary
rays. This yields a new rasterization technique, somewhat similar
to homogeneous 2D rasterization, which is faster than traditional
2D rasterization, requires less operations for setup and evaluation.
The accomplished similarity further allows us to transfer rendering
concepts between both rasterization and ray tracing. We presented
a generic algorithm that bridges both worlds and opens up a contin-
uum with numerous possibilities for future research, allowing us to
explore and compare new rendering methods.



We also believe that 3D rasterization makes the rendering pipeline –
in future unified software rendering pipeline architectures – simpler
and more elegant. Clearly, the next step would be to implement 3D
rasterization using CUDA within the software-based rasterization
pipeline of Laine and Karras [19]; depending on the scene, 3DR
could then benefit from the avoidance of vertex transformation and
possibly existing 3D acceleration structures. However, we aim for
further generalization, in particular, a parameterization which al-
lows for incremental computation, not only for the ray direction, but
also the ray origin. This has a vast number of applications in ren-
dering, such as the simulation of global effects requiring secondary
rays that are intricate to handle with rasterization, and expensive to
compute in ray tracing.
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