
Technical Report, August 20, 2009
VISUS/University Stuttgart and Saarland University

3D Rasterization – Unifying Rasterization and Ray Casting

Carsten Dachsbacher†1 Philipp Slusallek‡2 Tomas Davidovic3 Thomas Engelhardt1 Mike Phillips3 Iliyan Georgiev3

1VISUS, University of Stuttgart 2DFKI, Saarland University 3Excellence Cluster M2CI, Saarland University

Abstract

Ray tracing and rasterization have long been considered as two very different approaches to rendering images of
3D scenes that – while computing the same results for primary rays – lie at opposite ends of a spectrum. While
rasterization first projects every triangle onto the image plane and enumerates all covered pixels in 2D, ray tracing
operates in 3D by generating rays through every pixel and then finding the first intersection with a triangle. In this
paper we show that, by making a slight change that extends triangle edge functions to operate in 3D instead of 2D,
the two approaches become almost identical with respect to primary rays, resulting in an efficient rasterization
technique. We then use this similarity to transfer rendering concepts betweenthe two domains. We generalize
rasterization to arbitrary non-planar perspectives as known from ray tracing, while keeping all benefits from
rasterization. In the reverse we transfer the concepts of rendering consistency, which have not been available for
ray tracing thus far. We then demonstrate that the only remaining differencebetween rasterization and ray tracing
of primary rays is scene traversal. We discuss a number of approaches from the continuum made accessible by 3D
rasterization.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Display algorithms; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—;

1. Introduction

The two main algorithms used in computer graphics for gen-
erating 2D images from 3D scenes are rasterization [Pin88]
and ray tracing [App68, Whi80]. While they were devel-
oped at roughly the same time, rasterization has quickly
become the dominant approach for interactive applications
because of its initially low computational requirements (no
need for floating point in 2D image space), its ability to
be incrementally moved onto hardware, and later by the
ever increasing performance of dedicated graphics hard-
ware [Ake93, LKM01, NVI08]. The use of local per tri-
angle computation makes it well suited for a feed-forward
pipeline. However, the handling of global effects, such as
reflections, is intricate.

Ray tracing, on the other hand, works directly in 3D world
space, typically requiring floating point operations through-
out rendering with recursive visibility queries for global ef-

† dachsbacher@visus.uni-stuttgart.de
‡ slusallek@dfki.de

fects, which require almost random memory access. This has
resulted in the failure of many attempts to map ray tracing to
hardware. Software-only ray tracing for interactive applica-
tions was generally assumed to be non-competitive, and ray
tracing research essentially ceased during the 1990s. How-
ever, recent interactive Whitted-style ray tracing approaches
achieved significant performance gains [PMS∗99, WSB01,
RSH05] and ray tracing has efficiently been implemented in
hardware [WSS05]. Similar to many of these works, we fo-
cus on primary rays from a camera where rasterization and
ray tracing compute identical results. Casting such coherent
rays has been the focus of much research in ray tracing in re-
cent years. In this spirit, we consider higher-order rays, and
efficient global illumination algorithms, such as instant ra-
diosity, or photon mapping, as orthogonal to our approach.

Rasterization and ray tracing seemed to be fundamentally
different even for the case of primary rays. In this paper
we show that with just a slight generalization – rasterizing
through 3D edge functions defined in world space instead of
2D edge functions – we can fold ray casting, i.e. ray tracing
of primary rays, and rasterization into a single3D rasteriza-

2 Dachsbacher et al. / 3D Rasterization

Figure 1: With our approach, ray tracing and rasterization become almost identicalwith respect to primary rays. Now rasteri-
zation can directly render to non-planar viewports using parabolic and latitude-longitude parameterizations (left images), and
we can transfer rendering consistency and efficient anti-aliasing schemes from rasterization to ray tracing. The center image
shows the Venice scene consisting of 1.2 million triangles. Our 3D rasterization bridges both approaches and allows us to ex-
plore rendering methods in between. The right images show the number of edge function evaluations per pixel for two different
3D rasterization methods (3DR-BIN and 3DF-FULL, see Sect.5).

tion algorithm. As a result we can apply many techniques
that have been limited to one approach in the context of
the other. We demonstrate direct rasterization of non-planar
views, as well as efficient anti-aliasing and fully consistent
intersection computation for 3D rasterization.

In this new setting the only difference between the two algo-
rithms lies in the way the scene is traversed. Our approach
combines the 2D and 3D acceleration structures from ras-
terization and ray tracing: While the 2D grid of pixels is
used to (hierarchically) test tiles of pixels for overlap with
a triangle, we can use the same concept to test frusta against
the bounding boxes of spatial index structures as used in ray
tracing. Similarly, we can make use of an existing 3D spa-
tial index structure by using frustum culling and occlusion
culling in the core rasterization algorithm. Our approach al-
lows for freely, and continuously, exploring the space be-
tween traditional ray tracing and rasterization.

Because 3D rasterization operates in world space it uses
floating point computation throughout the pipeline. Our
main target platform is a fully software-based graphics
pipeline on highly parallel and programmable many-core
processors, such as Intel’s Larrabee. On such platforms there
is little, if any, drawback when using floating point compared
to fixed-point computation.

2. Previous Work

Rasterization is currently the dominant rendering tech-
nique for real-time 3D graphics, and is implemented in
almost every graphics chip. The well-known rasterization
pipeline [FvDFH90] (see Fig.4 for a contemporary design)
operates on projected and clipped triangles in 2D. The core
of the rasterization algorithm, coverage computation, deter-
mines, for all pixels (and possibly several sub-samples in
each pixel), whether they are covered by a given triangle.
The coverage test typically uses linear 2D distance functions
in image space, one for each triangle edge, whose sign de-
termines which side of an edge is inside the triangle [Pin88].
These functions can be evaluated in parallel, and hierarchi-

cally, to quickly locate relevant parts of the screen. Many ex-
tensions to this basic algorithm have been proposed includ-
ing the hierarchical Z-buffer [GKM93], efficient computa-
tion of coverage masks [Gre96], hierarchical rasterization in
homogeneous coordinates [OG97], and the irregularly sam-
pled Z-buffer [JLBM05].

The idea of ray tracing was introduced to graphics by Ap-
pel [App68], while Whitted [Whi80] developed the recur-
sive form of ray tracing. Since then, the two main trends in
ray tracing have been the development of physically correct
global illumination algorithms (see the overview in [PH04]),
and trying to reach real-time performance comparable to ras-
terization. The latter is most often achieved by simultane-
ously tracing packets of coherent rays to increase perfor-
mance on parallel hardware [WSB01]. Recent approaches
use large ray packets and optimized spatial index struc-
tures, such as kd-trees [RSH05], BVHs [WBS07], interval
trees [WSS05,WK06], and 3D grid structures [WIK∗06]. A
recent survey [WMG∗07] gives an overview of build and
traversal algorithms for spatial index structures used for ray
tracing. Related to this paper, Hunt et al. [HM08] describe
a continuum ofvisibility algorithmsbetween tiled z-buffer
systems and ray tracing by introducing acceleration struc-
tures that are specialized for rays with specific origins and
directions. Our work goes further, folds ray casting and ras-
terization into a single algorithm, and thus allows full explo-
ration of the continuum of rendering algorithms between the
two.

While rasterization has benefited tremendously from be-
ing implemented in dedicated hardware, ray tracing was al-
most exclusively limited to software implementations, even
when executed on the same graphics hardware [PBMH02,
HSHH07,PGSS07] (we consider GPUs as a programmable
hardware dedicated to graphics that runs software imple-
mented as shaders). However, the increasing parallelism and
programmability of graphics processors make it very likely
that both rendering algorithms will be mostly implemented
in software in the foreseeable future [Mar08,SCS∗08].

Dachsbacher et al. / 3D Rasterization 3

x,y [0;1]

x

y

e+
t'd

λ2=V2(e+td)/V

V2(d)

e

d

dy

e

d

(a) (b) (c) (d) (e)

d0

dy

dx

p2p2p0

p1

p1

p0

ep0

ep1

n2

e

d

p2

p1

p0

e

p2

p1

p0

e

p2

p1

p0

dx

Figure 3: 3D edge functions for a triangle(p0,p1,p2) and a ray starting at the eyeegoing through a pixel(x,y) with coordinates
d in world space. Intersection tests and computation of the barycentric coordinates are based on the signed volumes of the
spanned tetrahedra.

3. From 2D to 3D Rasterization

In the following we first briefly review the traditional 2D ras-
terization technique, as it is implemented in current graphics
hardware, before extending it to 3D. We discuss the modi-
fications that would be required for integration into existing
rendering pipelines, and illustrate benefits and new possibil-
ities.

3.1. 2D Rasterization

Any linear function,u, on a triangle in 3D, e.g. colors or tex-
ture coordinates, obeysu = aX + bY+ cZ, with (X,Y,Z)T

being a point in 3D, and the parametersa, b, andc can be
determined from any given set of values defined at the ver-
tices [OG97]. Assuming canonical eye space – where the
center of projection is the origin, the view direction is the
Z-axis, and the field of view is 90 degrees – dividing this
equation byZ yields the well-known 2D perspective correct
interpolation scheme [Hec89] from which we observe that
u/Z is a linear function in screen-space. During rasteriza-
tion bothu/Z and 1/Z are interpolated to recover the true
parameter value,u.

Likewise, we can now define three linear edge functions in
the image plane for every triangle (Fig.2): Their values are
equal to zero on two vertices and one on the opposite ver-
tex [OG97]. A pixel is inside the triangle if all three edge
functions are positive at its location and thus coverage com-
putation becomes a simple evaluation of the three edge func-
tions, which is well suited for parallel architectures. Hierar-
chical testing of pixel regions for triangle coverage, called
binning, is a major factor for rendering performance. Typ-

>0

<0
...

p2

p1
p0

p2

p1
p0

Figure 2: Left: The 2D edge function for the edgep0p2
which can be evaluated in parallel. A hierarchical search
can quickly locate pixels covered by the triangle (right).

ical implementations use either a quad-tree subdivision in
image space starting from the entire screen or the triangle’s
bounding box, or they locate relevant parts by sliding a larger
bin over the screen, followed by further subdivision or per-
pixel evaluation. Binning can be seen as similar to culling a
triangle from a frustum of primary rays in ray tracing. Note
that there are other triangle rasterization algorithms as well,
but hierarchical rasterization has proven to be the most ef-
ficient and hardware-friendly algorithm and we thus restrict
our discussion to it.

3.2. 3D Rasterization

Testing whether a pixel sample is covered by a 2D triangle
is equivalent to testing if a ray, beginning at the eye, going
through that pixel, intersects the triangle. Fig.3a depicts this
using the following notation:e is the eye location, and the
ray goes throughd = d0 + xdx + ydy, for pixel coordinates
(x,y), while p0, p1, p2 are the vertices of the triangle.

We can now formulate3D linear edge functionsusing the
signed volume idea well-known as the Pluecker ray-triangle
intersection test [O’R98,KS06]. We first consider the trian-
gle formed by the first edgep0p1 and the eye (see Fig.3b).
For notational simplicity in this explanation, but without loss
of generality, we assume thate is in the coordinate origin,
and thus the normal of the triangle isn2 = p1×p0. For better
numerical stability with small triangles we use, mathemati-
cally equivalent,n2 = p1× (p0−p1) in practice, and for the
cross-product we also use a consistent ordering of vertices
of adjacent triangles. We define the corresponding 3D edge
function asV2(x) = n2 ·x, which is equivalent to computing
the scaled signed volume of the tetrahedron with verticesp0,
p1, x, ande (here the origin). The scaling factor of 6 can be
ignored as intersection tests are based on the signs and ratios
of volumes.V2(x) is positive for allx in the half-space con-
tainingp2 (Fig. 3c). In analogy we defineV0 andV1 using:

ni = p(i+2) mod 3×p(i+1) mod 3

Vi(x) = ni ·x, with i = 0,1,2. (1)

We denote the scaled volume of the tetrahedron spanned by
the triangle and the origin byV = p j ·n j (for any j = 0..2).
To determine if the triangle is hit by a ray in the positive
direction we only need to consider the signs of the volumes

4 Dachsbacher et al. / 3D Rasterization

Modeling & Viewing

Transformation

(optional: Lighting)

Primitive

Assembly

Clipping and

Projective

Transformation

Interpolation of

Vertex Attributes

Early Z-Test

Geometry Processing Fragment Processing

Pixel Shading/Texturing

Hierarchical

Rasterization

Fragment Operations

Depth Test,

Stencil Operations,

Blending, ...

Figure 4: A depiction of the rasterization pipeline. When using 3D rasterization only the last stage of geometry processing and
the first step of fragment processing (shown in red), requires modifications.

Vi andV: The raye+ t′d, t′ > 0, hits the triangle if all four
volumes have the same sign. If the sign is positive, it hits the
triangle’s front face, otherwise it hits the back face.

At the intersection point,td, the sum of the tetrahedra vol-
umesVi(td) = ni · (td) equals the volumeV = p j · n j (for
j = 0..2) of the tetrahedron spanned by the triangle and the
origin. Solving fort we get:

V = V0(td)+V1(td)+V2(td)

t = V/(V0(d)+V1(d)+V2(d)) . (2)

We can also write the intersection point,td, using barycen-
tric coordinates astd = λ0p0+λ1p1+λ2p2 (Fig.3d), which
are in turn defined by the ratio of the scaled signed volumes,
Vi , with λi = Vi(d)/(V0(d) +V1(d) +V2(d)) [KS06]. Note
that we do not need to compute the ray parametert to test
for intersections or to determine the barycentric coordinates,
but we use it to compute the intersection coordinate and for
the depth test.

Similar to 2D edge functions, we can compute the deriva-
tives of the 3D edge functions with respect to screen space.
Not only aredx = ∂d/∂x anddy = ∂d/∂y constant for planar
views, but alsoVi,x = ∂Vi/∂x andVi,y = ∂Vi/∂y:

Vi(d) = ni ·d = ni · (d0 +xdx +ydy)

Vi,x =
∂Vi(d)

∂x
= ni ·dx and Vi,y =

∂Vi(d)

∂y
= ni ·dy. (3)

These derivatives can be used as in 2D for defining rendering
consistency (Sect.4.2) and for incremental evaluation of the
edge functions. However, the derivatives of the barycentric
coordinates,λi , are not constant due to the perspective pro-
jection. Once an intersection is found we can easily compute
t andλi for per-pixel texturing and shading.

Using 3D rasterization It is important to note that although
3D rasterizationis based on 3D edge functions it stillre-
quires 2D evaluations only. This is because the edge evalua-
tions per pixels boil down to computingVi(d0)+x·Vi,x +y·
Vi,y for each edge given a pixel(x,y).

Whether a direct or incremental evaluation is preferred de-
pends on the renderer’s architecture and binning strategy. In
our implementations we used the direct evaluation through-
out as it is more flexible, only marginally slower, and less
prone to rounding errors.

3.3. Comparison of 2D and 3D Rasterization

In this section we briefly summarize the similarities and dif-
ferences of hierarchical 2D rasterization (commonly used in
software and hardware renderers) and 3D rasterization:

• Both use edge functions which can be incrementally or
directly evaluated in image space to define the interior and
exterior of triangles.

• 3D rasterization can have lower cost; Although the edge
functions are defined in 3D, the evaluation takes place in
2D. Perspective correct computation of barycentric coor-
dinates requires less operations than with 2D rasterization.
Figure10 in the appendix compares 2D and 3D rasteri-
zation with respect to arithmetic operations required for
setup and evaluation of edge functions.

• No projection and clipping is required for 3D rasteriza-
tion and thus it is not limited to planar viewports (see
Sect.4.1); Setup computation, i.e. computingV, Vi(e+
d0), Vi,x, andVi,y, only depends on the camera position.

• Due to operation in world space, 3D rasterization oper-
ates on floating point data as in ray tracing. Some of the
consequences are discussed below.

3.4. A Rendering Pipeline with 3D Rasterization

Integrating 3D rasterization into the established rendering
pipeline requires some modifications. 2D and 3D rasteriza-
tion mainly differ in how they handle projection and viewing.
Note that traditional viewing transformations can remain un-
changed and, in this case, only modifications to the projec-
tive transformation and the rasterizer stage are necessary.

Projective Transformation 3D rasterization is very similar
to generating primary rays in ray tracing. The projective ma-
trix would be replaced by a new per-frame setup computing
dx anddy (depending on the eye positione and the field of
view determined byd0) for the evaluation of edge functions.

Homogeneous Coordinates The traditional rendering
pipeline uses homogeneous coordinates, primarily for per-
spective transformations, but other geometric calculations
can be expressed elegantly using these coordinates. 3D ras-
terization as explained above works in Euclidian space and
vertex coordinates need to be dehomogenized first. If we al-
low vertices, or the camera (for orthographic projections), to
lie at infinity, an evaluation of the edge functions in homoge-
neous coordinates is necessary. In the appendix we demon-
strate how to extend out method accordingly.

Dachsbacher et al. / 3D Rasterization 5

Hierarchical Rasterization 3D rasterization requires a dif-
ferent setup step for triangle rendering: A view-dependent
computation ofni from its vertices and the eye position,e,
and computing the signed volumes and derivatives thereof.

Viewing Transformation Optionally we can also replace
the canonical eye space transformation by a typical ray trac-
ing camera. By this we can exploit the fact that setup of
the triangle edge functions (Eq.1) only depends on the eye
position and not on the view direction. This can be benefi-
cial when rendering multiple viewports for one camera po-
sition, e.g. when rendering cube environment maps. Note
that when this modification is made the view and projective
transformations can be combined into a single pipeline stage.

4. Benefits of 3D Rasterization

Our generalization allows us to use the same core routine
for rendering images in rasterization and ray tracing of pri-
mary rays. As a consequence we can transfer rendering con-
cepts from one to the other. We demonstrate rasterization
with non-linear projections, and introduce rendering consis-
tency and anti-aliasing techniques known from rasterization
to ray tracing. Lastly, we discuss the continuum of rendering
algorithms that can be explored using 3D rasterization.

4.1. Non-planar Viewports

The key to efficient rendering is a cheap computation ofVi
for quickly testing for intersections and computing barycen-
tric coordinates. We will discuss the hemispherical view ob-
tained from the well-known parabolic mapping [HS98] as an
example. The paraboloid function isf (x,y) = 1

2 − 1
2(x2 +

y2), with x2 + y2 ≤ 1, the direction vectors of the hemi-
spherical viewport ared = (x,y, f (x,y))T , and the ray ori-
gin is e = (0,0,0)T . Both d andVi(d) = ni · d can be
evaluated directly, but as they are quadratic functions we
can also use a double incremental scheme to compute their
values. For an incremental evaluation of a 3D edge func-
tion,Vi , we initialize the computation for the pixel,(x0,y0),
and the corresponding direction vector,d0, with V = Vi(d0),
Vx = Vi,x(d0) andVy = Vi,y(d0). When going from a pixel,
(x,y), to another pixel,(x+∆x,y+∆y), we update:

V ← V +Vi(∆x,∆y)− nz

2
+∆x(Vx−nz)+∆y(Vy−nz)

Vx ← Vx−nx∆x and Vy← Vy−ny∆y. (4)

Note that parabolic rasterization has also been demonstrated
with GPUs [GHFP08] by determining 2D bounding shapes
for the curved triangles followed by per-pixel ray-triangle
intersections. 3D rasterization naturally handles non-linear
projections (Fig.1 shows two images generated with our
method), but hierarchical binning is based on the assump-
tion that edges are straight lines between the projected ver-
tices (Fig.5a). We avoid computing a 2D bounding shape,

as in [GHFP08], as this requires an additional set of edge
functions in image space. Instead we propose to modify the
locations where the edge functions are evaluated for bin-
ning. This is based on simple observations: The parabolic
projection of a linep0p1 is a circle arc with radiusr =
||n−1

z || ≥ 1, with n = (p0×p1)/||p0×p1||; the center is at
(nx/nz,ny/nz)

T [GHFP08]. A bin, of sizem×m, fails to de-
tect the intersection of aconvex edgeif the circle intersects
one side of the binning region only. We can compute the
maximum penetration depth of the circle which would still
not be detected (Fig.5b) by p = r −

√

r2−m2/4 (a com-
putationally simpler, tight bound forp is p≤m(1−

√
3/2),

as r ≥ 1). By virtually shifting the bin corners towards the
circle center byp we obtain a conservative intersection test
with the curved edge. Note that we only need to shift one
side of the bin, determined by the largest magnitude coordi-
nate of the vectors going from the bin center to the circle
center. Lastly, ifr < m/2 the circle might lie entirely inside
the bin and we always need to split and recursively test the
bin for triangle coverage.

We estimated the overhead for binning with this algorithm
for paraboloid mapping by rendering randomly generated
triangles. Approximately 18% of the bins have been re-
fined, although they did not intersect a triangle. We used the
conservative upper bound forp precomputed for fixed bin
sizes, thus introducing only marginal computational over-
head. Similar binning strategies can be developed for other
non-linear projections by geometric reasoning.

p0

p2

p1

m

r

p

p0

p1

(a) (b) (c) p0

p2
s

Figure 5: Binning evaluates the edge functions at the four
corners (red squares) and thus misses intersections with
curved edges which are circular arcs (a). We compute the
maximum penetration of convex edges (b), and shift the lo-
cations where each of the edge functions is evaluated (c).

4.2. Rasterization Consistency

One important feature of 2D rasterization is thatconsistency
rulescan be defined. They ensure that each pixel intersecting
adjacent triangles is rasterized exactly once. This is impor-
tant to avoid holes and incorrect blending when rendering
with semitransparent materials. A common rule, which is
used by OpenGL and Direct3D, is the top-left filling con-
vention with the pixel center as the decisive point. If it re-
sides on an edge then it belongs to the triangle to its right, or
below if the edge is horizontal [Mic06].

For 3D rasterization we adopt the same consistency rules.
We determine the triangle a pixel belongs to based on the
barycentric coordinates. If a pixel center lies on a triangle
edge, i.e.λi = 0, we base the decision on the derivatives

6 Dachsbacher et al. / 3D Rasterization

a)

V >0i,x

b)

V =0i,x

V <0i,y

c)

V >0i,x

V >0j,x

Figure 6: Rasterization consistency: we adopt the top-left
filling convention from OpenGL and Direct3D for 3D raster-
ization based on the barycentric coordinates and the deriva-
tives of Vi .

of Vi . For an edge, as shown in red in Fig.6a, the deriva-
tive Vi,x is positive for one triangle only, and we assign the
pixel to that triangle. If the edge is horizontal (Vi,x = 0),
we use the derivativeVi,y as the secondary criterion of the
top-left convention (Fig.6b). Similarly, we decide for pix-
els centered on vertices: The pixel belongs to the triangle
to its right (Fig. 6c), or to the one below if it resides on
a horizontal edge, i.e. it belongs to the triangle for which
(Vi,x > 0∧Vj,x > 0)∨(Vi,x = 0∧Vj,x > 0), with λi = λ j = 0.
Note that both derivatives are zero only for edges collapsed
to a point, and thus for degenerated triangles which are not
rasterized.

So far no fully consistent ray-triangle intersection algorithm
is known for ray tracing: A ray-triangle intersection is as-
sumed to happen if 0≤ λi ≤ 1 for the three barycentric co-
ordinates. This can lead to inconsistencies at shared edges,
or vertices, of adjacent triangles. If multiple intersections
are to be avoided, a scene-dependent epsilon distance along
the ray is chosen by the user such that only one intersec-
tion may occur. By using 3D rasterization as a replacement
for ray-triangle intersection of primary rays, the consistency
rules naturally transfer to ray tracing and enable fully consis-
tent rendering. Using these consistency rules we did not spot
any precision problems with direct evaluation or incremental
evaluation for small bin sizes.

4.3. Anti-aliasing

Anti-aliasing is crucial for high-quality image synthesis, but
it is computationally expensive and requires a lot of memory
and bandwidth. Most renderers use super-sampling, i.e. they
actually compute the image at a higher resolution and down-
sample the color buffer. Modern graphics hardware goes one
step further and decouples coverage sampling (determining
what fraction of a pixel is covered by a triangle) from shad-
ing computation: The coverage of sub-samples can be effi-
ciently computed in 2D and 3D rasterization while shading is
often the bottleneck. In this spirit, we added multi-sampling
and anti-aliasing with coverage samples (CSAA) [NVI08] to
our 3D rasterization framework (see Fig.7).

Figure 7: We also integrated anti-aliasing techniques into
3D rasterization: The rendering time using the 3DR-FULL
algorithm (see Sect.5) was 930 ms without anti-aliasing
(left), 10270 ms for 16× MSAA (center), and 4022 ms for
CSAA [NVI08] with 4 shading and 12 coverage samples
(right). Shading is computed using recursive ray tracing with
1 shadow ray, and 1 reflection ray for every sample.

4.4. The 3D Rasterization Continuum

With 3D rasterization, the scene traversal is left as the main
difference between rasterization and ray tracing of primary
rays. This forms a continuous space with each at an opposite
end. While pure rasterization must enumerate all triangles
in a scene in arbitrary order, traditional ray tracing traverses
the scene for every ray, each time enumerating only the min-
imum number of possible overlapping triangles.

A known intermediate sample point is frustum traversal of a
spatial index structure [RSH05], enumerating all primitives
of the scene overlapping the frustum. On the other hand,
given a frustum of rays (e.g. the entire screen, a tile, or a
single pixel), we must efficiently compute their intersections
with the triangles by the frustum (i.e. coverage computa-
tion).

This leads us to the following combined approach (see
Fig. 8), where F is a frustum and N is a node of the spatial
index structure (typically starting with the entire viewport
and the root node, respectively). The blue keywords denote
oracles which control the behaviour of the algorithm. For ex-

traverse(frustum F, node N) {
if (isOccluded or isOutside) return; // Fig. 9a
if (splitFrustum) { // Fig. 9b
split F into sub-frusta Fi // Fig. 9c
foreach (Fi) traverse(Fi, N)

} else
if (generateSamples) {
rasterize(N, binning) // Fig. 9d

} else {
foreach (child of N)
traverse(F, child of N)

} }

Figure 8: This continuous rendering algorithm allows us to
explore the continuum of methods between rasterization and
ray tracing. Note that therasterize function can be re-
placed by a ray-triangle intersections, or 2D rasterization
for linear projections.

Dachsbacher et al. / 3D Rasterization 7

ray frustum
BVH node

surface

intersections
ray frustum F

F1
F2

F4
F3

frustum culled

occlusion culled

center ray

(b) split frustum(a) (c) splitting &

 recursive

 traversal

(d) generate

 samples

Figure 9: The continuous rendering algorithm traverses frusta through a spatial index structure, and determines the frustum
samples covered by triangles. It consists of three operations: frustum and occlusion culling (a), frustum splitting (b, c), and
sample generation (d).

ample, the algorithm behaves like a standard 2D rasterizer if
we fix generateSamples andbinning as true, and all
other oracles as false. To obtain a coherent ray tracer,isOc-
cluded andisOutside perform a test to determine if a
spatial index node intersects a ray frustum or is occluded
by other geometry;splitFrustum is false; Thegen-
erateSamples oracle controls the traversal of the spatial
index structure and is true for leaves only, where it starts
a per-pixel ray-triangle intersection computation instead of
rasterizing the triangles.

We can now combine concepts from both ends of the con-
tinuum and use occlusion and frustum culling based on the
spatial index hierarchy with binning at the rasterization level
as an additional 2D acceleration structure. We also exper-
imented with adaptively splitting ray frusta, which can be
beneficial for scenes with an irregular distribution of detail.

5. Evaluation, Results and Discussion

For a meaningful evaluation of 3D rasterisation (3DR) we
conducted numerous experiments running on CPUs and
GPUs, and compare 3DR to highly optimized 2D rasteriza-
tion (2DR) and ray tracing implementations.

First, we developed a prototype CPU implementation of
3D rasterization and all components required to explore the
3D rasterization continuum outlined above. In order to as-
sess the performance of the resulting rendering algorithms
we compare this implementation to state-of-the-art highly-
coherent ray tracing on CPUs [WBS07] implemented in RT-
fact [GS08], and to a SSE hand-optimized 2D rasterization
algorithm. For the latter we implemented two versions, one
evaluating all pixels inside a triangle’s 2D bounding box
(2DR-BB), and one with hierarchical binning starting from
the triangle’s bounding box and using early-z-culling (2DR-
BIN).

In between these two extremes, we examined the following
sample points of the continuum:

• Pure 3D rasterization with brute-force evaluation of all
pixels inside a triangle’s bounding box (3DR-BB).

• Pure 3D rasterization with early-z-culling and binning
identical to the 2DR binning strategy (3DR-BIN).

• 3DR with frustum culling: We subdivide the screen into
frusta of 2562 pixels and use a bounding volume hier-
archy (BVH) to facilitate view frustum culling. Rasteri-
zation uses binning when leaf-nodes of the BVH are se-
lected for rendering (3DR-FC).

• 3DR without binning, but instead using occlusion culling
and frustum splitting (3DR-FS): A frusta is recursively
split, down to 82 pixels, if a frustum’s center ray misses
a BVH node’s bounding box (Fig.9b, c), or if the box is
small compared to the frustum.

• Combining the two previous options using occlusion
culling and adaptive frustum splitting first, followed by
3DR with binning and early-z-culling (3DR-FULL).

Table 1 summarizes our benchmarks. We give measured
frame times in milliseconds (ms), for the frame shown as
inset, in order to compare the relative performance in a CPU
software implementation. To allow a prediction of hardware
speed we also report the number of triangle setups, edge
function evaluations, and frustum vs. BVH-node intersec-
tions. The BVH was generated off-line using a SAH met-
ric [WBS07] taking between 1 second to 1 minute for our
test scenes. Building such acceleration structures for dy-
namic scenes is an active, yet orthogonal, research area; for
recent work see Lauterbach et al. [LGS∗09].

We observe that 3DR-BB is faster than 2DR-BB in most
scenes, although we typically evaluate edge functions more
often. The latter is because we cannot always determine tight
screen space bounding boxes in 3DR for triangles that would
be clipped in 2D rasterization, and we fall back to binning
starting from the entire screen in these cases. This also ex-
plains why 2DR-BB is faster in scenes with fewer, large tri-
angles, such as the Sponza and the Conference scenes. The
overhead of hierarchical binning (3DR-BIN and 2DR-BIN)
apparently does not amortize in our CPU implementations
for the average triangle size in our test scenes. 3D rasteriza-
tion with BVHs achieves a performance comparable to the
highly optimized RTfact implementation and 3DR-FS/3DR-
FULL even beat it for the Buddha and Teapots scenes which
exhibit a large number of very small triangles. This is due
to the adaptive frustum splitting; for the Teapots2 scene the
early-z culling in 3DR-FULL provides an additional small
speed-up.

8 Dachsbacher et al. / 3D Rasterization

Venice Conference Soda Out Soda In Sponza Buddha Teapots 1 Teapots 2
T=1.236k T=191k T=2.169k T=2.169k T=67k T=1.088k T=2.332k T=2.332k

RTfact 203ms 135ms 142ms 105ms 97ms 512ms 1796ms 857ms

2DR-BB
519ms
S=438k
E=9817k

97ms
S=45k
E=2340k

994ms
S=1444k
E=10008k

786ms
S=631k
E=11546k

92ms
S=26k
E=3912k

464ms
S=563k
E=2376k

962ms
S=1231k
E=4763k

1053ms
S=1176k
E=9547k

2DR-BIN
535ms
S=438k
E=5975k

105ms
S=45k
E=1586k

1021ms
S=1444k
E=9345k

818ms
S=631k
E=8839k

93ms
S=26k
E=2000k

467ms
S=563k
E=2376k

957ms
S=1231k
E=4763k

1052ms
S=1176k
E=9547k

3DR-BB
393ms
S=633k
E=9044k

138ms
S=87k
E=2599k

618ms
S=1082k
E=8107k

591ms
S=1064k
E=14625k

166ms
S=38k
E=6806k

310ms
S=532k
E=1912k

598ms
S=1217k
E=3964k

699ms
S=1181k
E=7894k

3DR-BIN
1310ms
S=633k
E=17441k

318ms
S=87k
E=3367k

2084ms
S=1082k
E=19720k

1609ms
S=1064k
E=14259k

235ms
S=38k
E=2067k

1470ms
S=532k
E=20873k

2963ms
S=1217k
E=46685k

3135ms
S=1181k
E=41542k

3DR-FC

452ms
S=380k
E=4775k
N=257k

186ms
S=46k
E=3648k
N=34k

915ms
S=1107k
E=4443k
N=821k

340ms
S=500k
E=1519k
N=377k

130ms
S=29k
E=1415k
N=21k

831ms
S=540k
E=11051k
N=393k

1751ms
S=1234k
E=28439k
N=829k

1793ms
S=1221k
E=16321k
N=842k

3DR-FS

381ms
S=595k
E=12223k
N=622k

293ms
S=475k
E=8709k
N=566k

281ms
S=370k
E=6139k
N=646k

258ms
S=156k
E=4214k
N=279k

216ms
S=195k
E=4923k
N=233k

387ms
S=808k
E=12935k
N=598k

907ms
S=1959k
E=31347k
N=1778k

796ms
S=1543k
E=24694k
N=1958k

3DR-FULL

287ms
S=266k
E=9085k
N=252k

218ms
S=168k
E=6136k
N=184k

259ms
S=370k
E=3327k
N=646k

164ms
S=57k
E=1877k
N=102k

142ms
S=69k
E=1721k
N=83k

403ms
S=808k
E=10187k
N=598k

960ms
S=1959k
E=26368k
N=1778k

768ms
S=1543k
E=14492k
N=1958k

Table 1: Rendering statistics for the algorithms explained in Sect.5 measured using one core of an Intel C2Q 9300 at 2.67GHz.
Timings are given in milliseconds (ms) for the frames shown above, however we render primary rays with constant colors
at 1024× 1024 resolution without anti-aliasing only (lighting and secondary rays are not included in the timings as they
are independent from the method used for primary rays). We also give thenumber of triangles (T), triangle setups (S), edge
evaluations (E), and nodes visited during BVH traversal (N). Note that numbers are given in thousands (k) and all methods use
backface-culling.

With regard to future graphics hardware, such as Intel’s
Larrabee, we ran a comparison of the basic 2D and 3D ras-
terization algorithms “close to the metal” (see also Appendix
and Figure10). We implemented both algorithms as Di-
rect3D shaders running on a GPU, and emulate the software-
rasterization of a triangle by letting the GPU render a square.
In both cases a vertex shader carries out the setup (we omit-
ted clipping for 2DR), and a pixel shader performs per-pixel
edge function evaluations and computes perspective correct
depth and barycentric coordinates. In order to avoid GPU in-
tricacies and to compare pure rasterization performance we
disabled depth-buffering and output all results color-coded.
The shaders were compiled using vertex/pixel shader 3.0
profiles. On an NVIDIA GeForce 8800GTX 3DR outper-
forms 2DR (homogeneous 2DR) for 262144 triangles with
153.9 to 120.6 (120.7) frames per second (fps), and with
1155 to 1073 (1079) fps for 256 triangles (both rendered at
1920×1200 resolution, triangles placed next to each other
such that they fill the screen). Note that 2DR normally re-
quires an additional clipping step that we omitted.

6. Conclusions and Future Work

Ray tracing and rasterization have long been considered as
two distinct rendering approaches. We showed that by mak-
ing a slight change that extends triangle edge functions to
operate in 3D, the two approaches become almost identical
with respect to primary rays. This yields a new rasterization
technique which is faster than traditional 2D rasterization,
and requires less operations for setup and evaluation. The ac-
complished similarity further allowes us to transfer render-
ing concepts between both rasterization and ray tracing. We
presented a generic algorithm that bridges both worlds and
opens up a continuum with numerous possibilities for future
research, allowing us to explore and compare new rendering
methods.

We also believe that 3D rasterization makes the rendering
pipeline – in future unified software rendering pipeline ar-
chitectures – simpler and more elegant, but we aim for fur-
ther generalization. In particular, a parameterization which
allows for incremental computation, not only for the ray di-
rection, but also the ray origin. This has a vast number of

Dachsbacher et al. / 3D Rasterization 9

applications in rendering, such as the rendering of global ef-
fects requiring secondary rays that are intricate to handle in
rasterization, and expensive to compute in ray tracing.

Acknowledgements

We would like to thank Veronica Sundstedt for the model of
the Ancient Egyptian Temple of Kalabsha.

Appendix

In this appendix we demonstrate how 3D rasterization, as
introduced in Section3, can be extended to homogeneous
coordinates. Again, we start from the tetrahedron spanned by
the triangle itself, and the origin of the rays, i.e. the camera or
eye position. Given a triangle with verticesV i = (wiVi ,wi)

T ,
i = 1,2,3, andwi 6= 0, an eye positionVe = (weVe,we)

T , and
a view directiond = (d,0)T , a pointV(t) = Ve+ td lying in
the plane of the triangle (in view direction, i.e.t > 0) can be
written as:

V(t) = γ1(t)V1 + γ2(t)V2 + γ3(t)V3 + γe(t)Ve,

with γe(t) = 0. (5)

This is equivalent to a linear system of equations:

weVe,x + tdx

weVe,y + tdy

weVe,z+ tdz

we

=

w1V1,x w2V2,x w3V3,x weVe,x

w1V1,y w2V2,y w3V3,y weVe,y

w1V1,z w2V2,z w3V3,z weVe,z

w1 w2 w3 we

γ1(t)
γ2(t)
γ3(t)
γe(t)

. (6)

We denote the determinant of a 4× 4 matrix with column
vectorsV i , V j , Vk , andV l asDi jkl :

Di jkl =
∣

∣ V i V j Vk V l
∣

∣ .

Solving the system of equations with Cramer’s rule yields:

γ1(t) = t
Dd23e

D123e
, γ2(t) = t

D1d3e

D123e
,

γ3(t) = t
D12de

D123e
, γe(t) =

(D123e+ tD123d)

D123e
. (7)

Fromγe(t)
!
= 0 follows that(D123e+ tD123d)

!
= 0, and thus:

t =−D123e

D123d
.

By substitutingt =−D123e
D123d

into Eqs.7 we get:

γ1 =−Dd23e

D123d
, γ2 =−D1d3e

D123d
, γ3 =−D12de

D123d
. (8)

Usingγ1, γ2, andγ3 with the bottom row of Eq.6 yields:

w1γ1 +w2γ2 +w3γ3 = we, and

D123d =− 1
we

[w1Dd23e+w2D1d3e+w3D12de] . (9)

Using Eq.8 we can compute the barycentric coordinates (in
homogeneous space) using four determinants. Through sim-
ple modifications, we obtain a reformulation using only three
determinants which reduces the triangle setup cost during
rasterization:

γ1 = we
Dd23e

w1Dd23e+w2D1d3e+w3D12de

γ2 = we
D1d3e

w1Dd23e+w2D1d3e+w3D12de

γ3 = we
D12de

w1Dd23e+w2D1d3e+w3D12de
. (10)

Since all operations are carried out on homogenous coordi-
nates,γ1, γ2, γ3, andt are given in homogenous space as well.
The corresponding barycentric coordinatesγ′i , i = 1,2,3, and
the deptht′ in real space are obtained by:

γ′1 = w1γ1, γ′2 = w2γ2, γ′3 = w3γ3, t′ =
t

we
. (11)

Orthographic Projection

3D rasterization also handles orthographic projections. We
rewrite Eq.5 using the view directiond instead of the eye
position and solve:

V(t) = γ1(t)V1 + γ2(t)V2 + γ3(t)V3 + γd(t)d,

with γd(t) = 0. (12)

Again V(t) = Ve+ td, but in this caseVe is a point on the
image plane, i.e.Ve = (x,y,1,1)T . Analogous to the perspec-
tive projection we apply Cramer’s rule and obtain:

γ1(t) =
De23d

D123d
, γ2(t) =

D1e3d

D123d
,

γ3(t) =
D12ed

D123d
, γd(t) =

(D123e+ tD123d)

D123d
. (13)

We now observe thatt = −D123e
D123d

, but expectedlyγi , i =
1,2,3, no longer depend on the deptht. Analogously to
Eq.10we obtain:

γ1 =
weDe23d

w1De23d +w2D1e3d +w3D12ed

γ2 =
weD1e3d

w1De23d +w2D1e3d +w3D12ed

γ3 =
weD12ed

w1De23d +w2D1e3d +w3D12ed
. (14)

Rasterization

For rasterization of perspective views, we parameterize our
direction vector over the image plane for pixels(x,y) as:

d = d0 +xdx +ydy

10 Dachsbacher et al. / 3D Rasterization

and hence obtain:

Dd23e = Dd023e+xDdx23e+yDdy23e

D1d3e = D1d03e+xD1dx3e+yD1dy3e

D12de = D12d0e+xD12dxe+yD12dye. (15)

For orthogonal views the observer positionVe is parameter-
ized over the image plane instead, and analogously we can
derive expressions for the incremental update

Ve = Ve0 +xVex +yVey

and obtain:

De23d = De023d +xDex23d +yDey23d

D1e3d = D1e03d +xD1ex3d +yD1ey3d

D12ed = D12e0d +xD12exd +yD12eyd. (16)

Homogeneous 3D Rasterization

The following pseudo code (following the Direct3D HLSL
syntax) handles 3D rasterization for perspective views. Note
that the setup code is generic and is not optimized for fixed
camera positions, viewing directions etc. The same code can
be using for orthographic projections. In this caseVE is re-
placed by the view direction, andD0, DX, andDY are re-
placed byVE0, VEX, VEY (identical to Eqs.15and16).

float det3(in float3 v0, in float3 v1, in float3 v2) {
return dot(v0, cross(v1, v2));

}

float det4(in float4 v0, in float4 v1,
in float4 v2, in float4 v3) {

float d = 0;
d += v3.w * det3(v0.xyz, v1.xyz, v2.xyz);
d -= v2.w * det3(v0.xyz, v1.xyz, v3.xyz);
d += v1.w * det3(v0.xyz, v2.xyz, v3.xyz);
d -= v0.w * det3(v1.xyz, v2.xyz, v3.xyz);

return d;
}

// per-triangle rasterization setup for perspective 3D rasterization
// Input: camera position VE
// triangle vertices V1, V2, V3
// image parameterization D0, DX, DY
// Output: determinants in VV0, VV1, VV2
// homogeneous-w in W
void setup(
in float4 VE, in float4 V1, in float4 V2, in float4 V3,
in float4 D0, in float4 DX, in float4 DY,
out float4 VV0, out float4 VV1, out float4 VV2,
out float4 W

) {

VV0 = float4(
det4(DX, V2, V3, VE), // D_{dx,2,3,e}
det4(DY, V2, V3, VE), // D_{dy,2,3,e}
det4(D0, V2, V3, VE), // D_{d0,2,3,e}
det4(V1, V2, V3, VE)); // D_{1,2,3,e}

VV1 = float4(
det4(V1, DX, V3, VE), // D_{1,dx,3,e}
det4(V1, DY, V3, VE), // D_{1,dy,3,e}
det4(V1, D0, V3, VE), 0); // D_{1,d0,3,e}

VV2 = float4(
det4(V1, V2, DX, VE), // D_{1,2,dx,e}
det4(V1, V2, DY, VE), // D_{1,2,dy,e}
det4(V1, V2, D0, VE),0); // D_{1,2,d0,e}

W = float4(V1.w, V2.w, V3.w, VE.w);
}

// Per-pixel operations
// Input: outputs from setup
// pixel position vector xy1=(x,y,1)
void rasterize(

in float4 VV0, in float4 VV1, in float4 VV2,
in float4 W, in float3 xy1)

{
float4 gad; //= (gamma_1,gamma_2,gamma_3, depth)
gad.x = dot(xy1, VV0.xyz); // D_{d,2,3,e}
gad.y = dot(xy1, VV1.xyz); // D_{1,d,3,e}
gad.z = dot(xy1, VV2.xyz); // D_{1,2,d,e}
gad.w = VV0.w; // D_{1,2,3,e}

if(v.x < 0 && v.y < 0 && v.z < 0)
{
float D123d = dot(gad.xyz, W.xyz);

// gamma and depth values in homogenous space
gad = (gad * W.w) / D123d;

// project barycentrics and depth into real space
gad = gad.xyzw * float4(W.xyz, 1.f / W.w);

SetPixel(x, y, gad.x, gad.y, gad.z, gad.w);
}

}

Side-by-side Comparison to 2D Rasterization

In Figure10 we show a side-by-side comparison of the 3D
rasterization method optimized for dehomogenized coordi-
nates, 2D rasterization, and homogeneous 2D rasterization
in Direct3D HLSL syntax. We give the number of scalar
instruction required for setup, and per-pixel evaluation, and
also the number of instruction slots when compiling the code
using the vertex/pixel shader 3.0 profiles.

References

[Ake93] AKELEY K.: Reality engine graphics. InSIGGRAPH
’93 (1993).

[App68] APPEL A.: Some techniques for shading machine ren-
derings of solids. InAFIPS ’68 (Spring): Proceedings of the April
30–May 2, 1968, spring joint computer conference(1968).

[FvDFH90] FOLEY J. D.,VAN DAM A., FEINER S. K., HUGHES

J. F.: Computer Graphics: Principles and Practice (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., 1990.

[GHFP08] GASCUEL J.-D., HOLZSCHUCH N., FOURNIER G.,
PÉROCHE B.: Fast non-linear projections using graphics hard-
ware. InSI3D ’08: Proceedings of the 2008 Symposium on Inter-
active 3D Graphics and Games(2008).

[GKM93] GREENE N., KASS M., M ILLER G.: Hierarchical Z-
buffer visibility. In SIGGRAPH ’93(1993).

[Gre96] GREENE N.: Hierarchical polygon tiling with coverage
masks. InSIGGRAPH ’96(1996).

[GS08] GEORGIEV I., SLUSALLEK P.: Rtfact: Generic concepts
for flexible and high performance ray tracing. InProceedings
of the IEEE / EG Symposium on Interactive Ray Tracing 2008
(2008).

[Hec89] HECKBERTP. S.:Fundamentals of Texture Mapping and
Image Warping. Tech. rep., Berkeley, CA, USA, 1989.

[HM08] HUNT W., MARK W. R.: Ray-specialized acceleration
structures for ray tracing. InIEEE/EG Symposium on Interactive
Ray Tracing 2008(Aug 2008).

[HS98] HEIDRICH W., SEIDEL H.-P.: View-independent envi-
ronment maps. InProceedings of the ACM SIGGRAPH/EURO-
GRAPHICS workshop on Graphics hardware(1998).

Dachsbacher et al. / 3D Rasterization 11

2D Rasterizer 2D Homogeneous Rasterizer 3D Rasterizer (for cartesian coordinates)

Triangle Setup (assuming that the eye position is in the origin; a, b, c denote the triangle vertices):

float4 v0 = mul(projMat, a);
float4 v1 = mul(projMat, b);
float4 v2 = mul(projMat, c);

float w0 = v0.w; v0 /= w0;
float w1 = v1.w; v1 /= w1;
float w2 = v2.w; v2 /= w2; // 3 RCP, 9 MUL

float3 D12 = cross(v1.xyw, v2.xyw);
float3 D20 = cross(v2.xyw, v0.xyw);
float3 D01 = cross(v0.xyw, v1.xyw);

// 3*(3 MUL,3 MADD)

float DET = dot(v0.xyw, D12);
// 1 MUL, 2 MADD

float3x3 InterpolationMatrix = // 9 MUL, 1 RCP
 float3x3(D12, D20, D01) / DET;

float3 DEPTH = float3(v0.z, v1.z, v2.z) *
 InterpolationMatrix; // 3 MUL, 6 MADD

float3 ONE_OVER_W =
 float3(1.0 / w0, 1.0 / w1, 1.0 / w2) *
 InterpolationMatrix;

// 3 RCP, 3 MUL, 6 MADD

float4 v0 = mul(projMat, a);
float4 v1 = mul(projMat, b);
float4 v2 = mul(projMat, c);

float3 D12 = cross(v1.xyw, v2.xyw);
float3 D20 = cross(v2.xyw, v0.xyw);
float3 D01 = cross(v0.xyw, v1.xyw);

// 3*(3 MUL,3 MADD)

float DET = dot(v0.xyw, D12);
 // 1 MUL, 2 MADD

float3x3 InterpolationMatrix = // 9 MUL,1 RCP
 float3x3(D12, D20, D01) / DET;

float3 DEPTH = float3(v0.z, v1.z, v2.z) *
 InterpolationMatrix; // 3 MUL, 6 MADD

float3 ONE_OVER_W =
 float3(1.0, 1.0, 1.0) *
 InterpolationMatrix;
 // 6 ADD

// d0, dx, dy defines the camera
float3 n0 = cross(b – c, c); // 3 MUL, 3 MADD
float3 n1 = cross(c – a, a); // 3 MUL, 3 MADD
float3 n2 = cross(a – b, b); // 3 MUL, 3 MADD

float V = dot(n0, a); // 1 MUL, 2 MADD
float V0 = dot(n0, d0); // 1 MUL, 2 MADD
float V1 = dot(n1, d0); // 1 MUL, 2 MADD
float V2 = dot(n2, d0); // 1 MUL, 2 MADD
float V0x = dot(n0, dx); // 1 MUL, 2 MADD
float V0y = dot(n0, dy); // 1 MUL, 2 MADD
float V1x = dot(n1, dx); // 1 MUL, 2 MADD
float V1y = dot(n1, dy); // 1 MUL, 2 MADD
float V2x = dot(n2, dx); // 1 MUL, 2 MADD
float V2y = dot(n2, dy); // 1 MUL, 2 MADD

Output of the setup stage:

InterpolationMatrix(I12, I20, I01)
DEPTH, ONE_OVER_W

InterpolationMatrix (I12, I20, I01)
DEPTH, ONE_OVER_W

V0 = float4(V0x, V0y, V0, V);
V1 = float3(V1x, V1y, V1);
V2 = float3(V2x, V2y, V2);

Per-Triangle Arithmetic Operations / Instruction Slots

23 MADD, 0 ADD, 34 MUL, 4 RCP = 55 Ops

1 DP3, 12 DP4, 7 MAD, 6 MOV, 11 MUL, 4 RCP = 41

1 DP3, 7 MAD, 3 MOV, 11 MUL, 4 RCP = 27

17 MADD, 6 ADD, 22 MUL, 1 RCP = 46 Ops

1 DP3, 12 DP4, 7 MAD, 6 MOV, 7 MUL, 1 RCP = 34

1 DP3, 7 MAD, 5 MOV, 7 MUL, 1 RCP = 21

29 MADD, 0 ADD, 19 MUL = 48 Ops

3 ADD, 10 DP3, 3 MAD, 2 MOV, 3 MUL = 21

Per-Pixel Operations for a pixel with coordinates (x,y), with xy1 = float3(x, y, 1.0)

float E01 = dot(I01, xy1);
float E12 = dot(I12, xy1);
float E20 = dot(I20, xy1); // 3*2 MADD

if (E12 < 0 && E20 < 0 && E01 < 0)
{
 float Z, W, u, v;

 W = 1.0 / dot(ONE_OVER_W, xy1);
// 2 MADD, 1 RCP

 Z = dot(DEPTH, xy1) * W;
 // 2 MADD, 1 MUL

 u = E12 * W // 1 MUL
 v = E20 * W // 1 MUL

 result = float4(u, v, Z, 0.0);
}

float E01 = dot(I01, xy1);
float E12 = dot(I12, xy1);
float E20 = dot(I20, xy1); // 3*2 MADD

if (E12 < 0 && E20 < 0 && E01 < 0)
{
 float Z, W, u, v;

 W = 1.0 / dot(ONE_OVER_W, xy1);
// 2 MADD, 1 RCP

 Z = dot(DEPTH, xy1) * W;
 // 2 MADD, 1 MUL

 u = E01 * W; // 1 MUL
 v = E12 * W; // 1 MUL

 result = float4(u, v, Z, 0.0);
}

float4 v = float4(
 dot(xy1, V0.xyz),
 dot(xy1, V1.xyz),
 dot(xy1, V2.xyz),
 V0.w); // 3*2 MADD

if (v.x > 0 && v.y > 0 && v.z > 0)
{
 float invV = 1.0f / dot(v.xyz, 1);
 // 1 RCP, 2 ADD

 v.xyw *= invV; // 3 MUL

 result = float4(v.x, v.y, v.w, 0.0);
}

Per-Pixel Arithmetic Operations / Instruction Slots

10 MADD, 3 MUL, 1 RCP = 14 Ops

1 DIV, 5 DP3, 4 CMP, 2 MUL, 1 MOV = 13

10 MADD, 3 MUL, 1 RCP = 14 Ops

4 CMP, 5 DP3, 1 MUL, 2 MOV, 1 RCP = 13

6 MADD, 2 ADD, 3 MUL, 1 RCP = 12 Ops

4 CMP, 4 DP3, 2 MOV, 1 MUL, 1 RCP = 12

Figure 10: Relative costs of 3D rasterization optimized for dehomogenized coordinatesand (homogeneous) 2D rasteriza-
tion [OG97] including perspective correct computation of depth and barycentric coordinates for interpolation: additions
(ADD), multiplications (MUL) and reciprocals (RCP). Multiply-add (MAD) operations are used where possible to replace
sequent MUL and ADD operations. Red numbers denote the number of scalar operations, blue denotes the number of instruc-
tion slots when the code is compiled using Direct3D’s HLSL compiler for the vertex/pixel shader 3.0 profiles. The green number
denote the setup cost for 2D (homogeneous) rasterization if the projectionmatrix multiplication is ignored. We assume that a
camera transformation is applied that transforms the observer into the originbefore the setup. Clipping cost is also ignored in
this comparison.

12 Dachsbacher et al. / 3D Rasterization

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree gpu raytracing. InI3D ’07: Pro-
ceedings of the 2007 Symposium on Interactive 3D Graphics and
Games(2007).

[JLBM05] JOHNSON G. S., LEE J., BURNS C. A., MARK

W. R.: The irregular z-buffer: Hardware acceleration for irregu-
lar data structures.ACM Trans. on Graph. 24, 4 (2005).

[KS06] KENSLERA., SHIRLEY P.: Optimizing ray-triangle inter-
section via automated search. InProceedings of the IEEE Sym-
posium on Interactive Ray Tracing(2006).

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus.
Computer Graphics Forum 28, 2 (2009).

[LKM01] L INDHOLM E., KILGARD M. J., MORETON H.: A
user-programmable vertex engine. InSIGGRAPH ’01(2001).

[Mar08] MARK W.: Future graphics architectures.Queue 6, 2
(2008).

[Mic06] M ICROSOFT: Direct3D 10 Reference. Direct3D 10
graphics, http://msdn.microsoft.com/directx, 2006.

[NVI08] NVIDIA: NVIDIA GPU programming guide.
http://developer.nvidia.com, December 2008.

[OG97] OLANO M., GREER T.: Triangle scan conversion us-
ing 2D homogeneous coordinates. InProceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware
(1997).

[O’R98] O’ROURKE J.: Computational Geometry in C. Cam-
bridge University Press, New York, NY, USA, 1998.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRAHAN

P.: Ray tracing on programmable graphics hardware. InACM
Trans. on Graph. (Proceedings of SIGGRAPH 2002)(2002).

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Stackless kd-tree traversal for high performance gpu raytrac-
ing. Computer Graphics Forum (Proceedings of Eurographics)
26, 3 (Sept. 2007).

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[Pin88] PINEDA J.: A parallel algorithm for polygon rasteriza-
tion. Computer Graphics (Proceedings of SIGGRAPH ’88) 22, 4
(1988).

[PMS∗99] PARKER S. G., MARTIN W., SLOAN P.-P., SHIRLEY

P., SMITS B., HANSEN C.: Interactive ray tracing. InPro-
ceedings of the 1999 symposium on Interactive 3D graphics and
games(1999).

[RSH05] RESHETOVA., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm.ACM Trans. on Graph. (Proceedings of
SIGGRAPH 2005) 24, 3 (2005).

[SCS∗08] SEILER L., CARMEAN D., SPRANGLE E., FORSYTH

T., ABRASH M., DUBEY P., JUNKINS S., LAKE A., SUGER-
MAN J., CAVIN R., ESPASA R., GROCHOWSKI E., JUAN T.,
HANRAHAN P.: Larrabee: a many-core x86 architecture for vi-
sual computing. ACM Trans. on Graph. (Proceedings of SIG-
GRAPH 2008) 27, 3 (2008).

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. on Graph. (Proceedings of SIGGRAPH 2007) 26,
1 (2007).

[Whi80] WHITTED T.: An improved illumination model for
shaded display.Communications of the ACM 23, 6 (1980).

[WIK ∗06] WALD I., IZE T., KENSLERA., KNOLL A., PARKER

S. G.: Ray tracing animated scenes using coherent grid traversal.
ACM Trans. on Graph. (Proceedings of SIGGRAPH 2006) 25, 3
(2006).

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. InProceedings of the Eurograph-
ics Symposium on Rendering(2006).

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOULOS S.,
IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the art
in ray tracing animated scenes. InSTAR Proceedings of Euro-
graphics 2007(2007).

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
distributed ray tracing of highly complex models. InRender-
ing Techniques 2001 (Proceedings of the 12th EUROGRAPHICS
Workshop on Rendering)(2001).

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU:
A programmable ray processing unit for realtime ray tracing.
In ACM Trans. on Graph. (Proceedings of SIGGRAPH 2005)
(2005), vol. 24.

