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Arnold: A Brute-Force Production Path Tracer
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Fig. 1. Arnold is a path-tracing renderer used for the production of photo-realistic and art-directed visual effects in feature films (left), commercials (middle),
animated films (right), television series, music videos, game cinematics, motion graphics, and others. Gravity ©2013 Warner Bros. Pictures, courtesy of

Framestore; Racing Faces ©2016 Opel Motorsport, courtesy of The Mill; Captain Underpants ©2017 DreamWorks Animation.

Arnold is a physically based renderer for feature-length animation and vi-
sual effects. Conceived in an era of complex multi-pass rasterization-based
workflows struggling to keep up with growing demands for complexity
and realism, Arnold was created to take on the challenge of making the
simple and elegant approach of brute-force Monte Carlo path tracing prac-
tical for production rendering. Achieving this required building a robust
piece of ray-tracing software that can ingest large amounts of geometry
with detailed shading and lighting and produce images with high fidelity,
while scaling well with the available memory and processing power.

Arnold’s guiding principles are to expose as few controls as possible,
provide rapid feedback to artists, and adapt to various production work-
flows. In this article, we describe its architecture with a focus on the design
and implementation choices made during its evolutionary development to
meet the aforementioned requirements and goals. Arnold’s workhorse is
a unidirectional path tracer that avoids the use of hard-to-manage and
artifact-prone caching and sits on top of a ray-tracing engine optimized to
shoot and shade billions of spatially incoherent rays throughout a scene.
A comprehensive API provides the means to configure and extend the sys-
tem’s functionality, to describe a scene, render it, and save the results.
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1 INTRODUCTION

At a purely technical level, visual realism in computer-generated
imagery boils down to two areas: (1) amount of scene detail, e.g.,
number of geometric primitives, amount of textures, variety of ma-
terials, and proceduralism, and (2) quality of the lighting simula-
tion, e.g., soft shadows, reflections, refractions, and indirect light.

For decades, the prevailing production rendering systems
were based on micropolygon rasterization (Cook et al. 1987).
These could handle geometrically complex data sets but with
poor lighting simulation quality. Ray tracing could achieve much
higher quality, with accurate lighting effects, but was too costly
except on simple scenes and was therefore not considered viable
for production.

Over the years, increasing demands for realism forced the users
of micropolygon rasterization to find ways of producing more
complex, plausible lighting effects within the constraints imposed
by that method. Adding features such as shadows or indirect light-
ing required the use of various precomputation passes to create
shadow maps or diffuse inter-reflection caches. The intermediate
results from these passes would then be carefully assembled into
a final image during the shading of the rasterized camera-visible
objects.

This approach resulted in a convoluted workflow revolving
around the management of often complex dependencies between
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various rendering passes and the storage of their intermediate re-
sults. Output was still limited in quality, subject to adjusting many
parameters, and prone to temporal flickering due to the use of var-
ious types of caches and interpolation. This led to slow artist it-
eration on frames and entire shots. Moreover, many increasingly
desirable effects, such as specular reflection, refraction, and accu-
rate indirect lighting, could not be easily achieved. Renderers were
augmented with ray-tracing functionality to selectively add such
effects during the final shading (Christensen et al. 2006). Ray trac-
ing was slowly gaining traction, but a simpler and more scalable
approach was needed for artists to naturally get plausible lighting
effects while iterating faster and with fewer errors.

1.1 Path Tracing

Stochastic path tracing (Kajiya 1986) provides an elegant approach
to photo-realistic rendering that is far less subject to the issues
experienced with rasterization. It naturally simulates all lighting
effects, such as soft shadows, indirect illumination, glossy reflec-
tions, motion blur, depth of field, hair/fur, volumetrics. There is
no requirement to split the rendering into passes with intermedi-
ate products to compute such effects—the user simply provides the
scene and desired settings, and a final image is computed at once.

Beyond disentangling the rendering workflow, path tracing
brings other advantages. It is relatively easy to control via a hand-
ful of sample-count parameters. The approximation error appears
as fine-grained noise that is less visually objectionable than the
“blotchy” artifacts of cache-based methods and is not susceptible to
low-frequency flickering in animation. It also allows for progres-
sive rendering, which in turn enables quick iteration over shading
and lighting, and the amount of noise diminishes predictably as
the sample counts are increased.

The advantages of path tracing were well known, but its longer
render times and lower efficiency with important production
features such as motion blur, complex geometry, and volumetrics
appeared to be a weakness of its more brute-force approach.
However, production workflows had become so complicated that
artists were wasting significant time and effort attempting to do
what path tracing could already easily do, though perhaps more
slowly. It became compelling to try and tackle the weaknesses of
path tracing while playing to its strengths, especially given that
an hour of an artist’s time can cost hundreds of times more than
an hour of compute time.

1.2 The Arnold Philosophy

The development of Arnold was spurred by the need for a stream-
lined physically based production renderer that scales to film com-
plexity. Arnold takes on the ambitious goal of efficiently rendering
artifact-free images of dynamic scenes with massive complexity
in-core, while at the same time simplifying the workflow, infras-
tructure requirements, and user experience. Path tracing naturally
ticked most boxes.

Our guiding philosophy is that the renderer must be easy to use
and be able to provide quick feedback to artists. Speed and memory
efficiency are important for a production renderer, and through-
out the article, we discuss some of the strategies we employ to
achieve these goals. Perhaps less obvious is that simplicity is also

important for saving both artist and compute time. Reducing the
number of knobs and dials makes the renderer not only easier to
use but also lowers the chance of a wrong setting being chosen
that could result in slower or even unusable renders. These goals
are met to a large degree with the switch from rasterization to path
tracing, as discussed above. To further enable users to focus on
their creative work, Arnold focuses on providing predictable per-
formance and scalability with input complexity.

Unlike in-house renderers tailored to specific pipeline needs, a
commercial renderer like Arnold has to integrate with the unique
workflows of many facilities, each using different (often custom-
made) tools and file formats. Arnold has therefore been conceived
to be as much an application programming interface (API) as a
rendering back-end. The API is used to incorporate Arnold into
existing content creation tools and to cater to custom needs by
extending its functionality via, e.g., shaders, file loaders, or entire
end-user applications.

2 SYSTEM OVERVIEW

Arnold has been designed for both offline and interactive ren-
dering, though its API allows users to implement their own ray
tracing-based tools, such as rendering to textures (a.k.a. baking).
Interactivity is not just limited to moving the camera but could be
any other scene change. To reduce latency in interactive rendering,
we avoid computationally expensive global optimizations, such as
merging geometric objects into a single ray-tracing acceleration
structure or precomputing shading or lighting.

2.1 Node Structure

The system is built on top of a programmable node-based struc-
ture. Every scene component, including geometry, lights, and cam-
eras, is a node that is simply a type with a collection of named
parameters. Nodes can be instanced multiple times and intercon-
nected in networks, e.g., to form complex geometric and shad-
ing surface details. So-called “procedural” nodes can invoke user-
provided code to, e.g., create child nodes that can represent the
feathers on a bird or imported data from a custom file format. Node
data can be serialized in a human-readable Arnold scene source
(.ass) file format.

A flat list stores the top-level geometry nodes, such as triangle
meshes, curve sets, and procedurals, each having its own trans-
formation. This simple structure was chosen for the sake of effi-
ciency of the rendering code and ray-tracing acceleration struc-
tures. It does not support grouped node transformations; this has
not been a big limitation in practical workflows as scene transla-
tors have picked up the slack for flattening complex input hierar-
chies. When necessary, arbitrarily deep hierarchies inside Arnold
can still be achieved via procedural node nesting, as we discuss in
Section 3.5.4.

2.2 Initialization and Delayed Node Processing

Once all nodes have been created, either via the API or by code in
procedural nodes, the bounds of all geometry nodes are computed
(bottom-up) and a ray-tracing acceleration structure, a bound-
ing volume hierarchy (BVH), is built over top-level ones. Individ-
ual nodes have separate BVHs built over their own contents, i.e.,
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geometric primitives or, for procedurals, child nodes. However, the
construction of each such BVH, as well as any involved geometry
processing, is delayed until a ray later intersects the node’s bounds.

There are two main benefits to delayed node processing. One
is that if no ray ever hits an object, we avoid both the time
and memory overhead of processing its corresponding node. The
processing includes polygon/curve subdivision, smoothing, dis-
placement, and the BVH construction over the final geometric
primitives, as detailed in Section 3. The savings can be substantial
when the object has subdivision applied. The other benefit of this
approach is that it can reduce the time to first pixel in an interactive
progressive rendering session, allowing some pixels to be quickly
rendered and displayed before all objects in the scene have been
processed. Such a scenario is especially common in large outdoor
environments. In fact, it is not unusual for some object processing
to still happen on the second or third progressive rendering iter-
ation, since up to that point relatively few rays have been traced
through the scene.

There are also downsides to delayed processing. One is in-
creased code complexity, especially with regard to parallelism and
making sure threads do not block if they trace rays that hit an
object being processed. Another is that it makes optimizations
across the hierarchy of BVHs more difficult, as we discuss later in
Section 3.4.

Until very recently, the execution of procedural-node code used
to also be delayed until a ray intersected the node’s bounds. This
was changed for two reasons. One was to open the door for opti-
mizations across the entire node hierarchy, such as BVH construc-
tion or the tessellation of a mesh w.r.t. the closest distance to the
camera among all of its instances. Another was to unburden the
user from having to specify bounds for the procedural, needed for
top-level BVH construction. Computing such bounds would re-
quire extra pre-processing and was not always easy to do accu-
rately ahead of time, e.g., for procedurally generated or archived,
i.e. disk-dumped, geometry. As a result, the bounds were often too
loose or too tight, resulting in inefficiencies or an incorrect BVH,
respectively. While slightly increasing the time to first pixel, aban-
doning delayed procedural expansion resulted in an overall perfor-
mance improvement, in addition to the added user convenience.

2.3 Ray and Shader Processing

Arnold’s ray tracing kernel processes rays and shades their corre-
sponding hit points one at a time, without using ray packets. We
still benefit from SIMD parallelism during BVH traversal (Wald
et al. 2008) and by intersecting both multiple primitives with a ray
or a single primitive with a ray. We would likely achieve higher
performance if we used large ray packets when rays are coher-
ent, e.g., for rays emanating from a small-aperture camera (Boulos
et al. 2007; Reshetov et al. 2005). However, most path-tracing rays
do not fit this criterion. According to our experience on production
renders, the percentage of coherent rays goes down as scene com-
plexity, number of bounces, and usage of motion blur and depth-
of-field all increase. This makes it difficult to justify pursuing ray
packets as they only accelerate a small fraction of all rays.

Batching similar rays or shaders together helps in finding more
coherence. This is especially attractive for SIMD shading and tex-

Fig. 2. The Knowhere station in the film Guardians of the Galaxy com-
prised 1.2 billion unique triangles that fit within 30GB of memory in
Arnold. ©2014 Marvel Studios/Walt Disney Pictures, courtesy of Framestore.

turing, even with single-ray traversal (Áfra et al. 2016; Eisenacher
et al. 2013; Lee et al. 2017). While batch shading, in particular, is
an interesting avenue we would like to explore, we must be mind-
ful that incorporating such a strategy in Arnold would likely not
work with preexisting C++ shaders, require a new more restrictive
shading API, and burden its users with writing vectorized shaders.
Nevertheless, with the adoption of higher-level shading languages
(see Section 4.6), batch processing may become more practical via
automatic shader vectorization (Gritz et al. 2010; Lee et al. 2017).

Arnold does not support out-of-core geometry (Pharr et al. 1997;
Son and Yoon 2017; Budge et al. 2009). This self-imposed restriction
allows for a simpler and easier-to-improve renderer, which in turn
lets us focus our effort on the more common case of in-core scenes.

3 GEOMETRY

Feature films require high levels of geometric complexity from
a variety of primitive types. Arnold provides polygon meshes,
curves, points, volumes, and implicit surfaces for these needs. It
is optimized to efficiently store hundreds of millions of primitives
and accelerate ray intersections against them (see Figure 2).

3.1 Mesh Processing

The first ray that intersects the bounds of a geometry node trig-
gers the execution of the node’s associated geometry processing
steps that culminate with the BVH construction. For polygon mesh
nodes, these steps are subdivision, displacement, and normal ad-
justment.

3.1.1 Subdivision. Arnold supports Catmull-Clark and linear
subdivision. It can work on cages with arbitrary n-gons and non-
manifold topology, which frequently occur in production meshes.
The system will also subdivide any user data associated with poly-
gons and vertices. Different boundary interpolation modes and in-
finitely sharp and soft creases on vertices and edges are also sup-
ported. Creases do not add too much code complexity thanks to
template specialization for subdivision rules and a simple approx-
imation for neighboring limit normals. Subdivided surfaces are
compatible with the equivalent OpenSubdiv (2017) definitions—
a hard requirement for some users who rely on a common lan-
guage to share cages between providers. The final tessellation
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Fig. 3. Curve primitives are most commonly used to render hair and fur.
Maya ©2015 SSE, courtesy of The Mill; Follow The Rabbit ©2017 O2, courtesy

of The Mill.

corresponds to uniform or adaptive per-patch subdivision. Users
may also choose to skip subdivision for patches lying outside the
view/dicing camera frustum, as these are unlikely to noticeably
contribute to the final image.

3.1.2 Displacement and Autobump. Arnold’s displacement
stage can only move existing vertices, therefore the subdivision’s
tessellation should provide enough resolution to capture the user’s
desired profile shape and overall smoothness. Any additional
high-frequency displacement detail that cannot (or is impractical
to be) represented by actual geometry is captured via a surface nor-
mal adjustment feature that we call autobump. During shading, we
run the displacement shader three times for each shading point to
determine its would-be displaced location and tangent plane. The
shading normal is then tilted to capture that high-frequency de-
tail. This does not exactly match the shading of the real displaced
geometry, but is a good approximation in practice. The drawbacks
of the approach are very similar to those of normal mapping.

The autobump feature allows for saving memory by lowering
the subdivision level, but it comes at the cost of more expensive
shading due to the extra evaluations of the displacement shader.
As memory capacities grow, it becomes increasingly likely to have
mesh densities approaching one triangle per pixel, and conse-
quently the reliance on autobump will probably wane.

3.2 Curves and Points

Thin primitives are a difficult case for ray tracers, due to po-
tential aliasing resulting from insufficient ray sampling density
(Figure 3). Under animation, this aliasing manifests as buzzing as
the primitives scintillate into and out of existence. To alleviate
this, we use a RenderMan-inspired (Cook et al. 2007) minimum

pixel width parameter, which prevents aliasing by (1) expanding
the width of curves and points so that they cover at least the spec-
ified distance across a pixel, and (2) compensating for this expan-
sion by making the curves proportionately more transparent. This
alteration produces a slightly different look, therefore the decision
whether to use this feature has to be made early on in the look
development cycle. Toggling the feature can be difficult once the
look of an object has been approved. Another drawback is a per-
formance hit due to the increased number of semi-transparent in-
tersections along rays. We address this issue via stochastic opacity,
as detailed in Section 5.5.

Curves can be stored in piece-wise cubic Bézier, Catmull-Rom,
B-spline, and linear formats. During intersection testing, we use
basis matrices to allow the existing control points to be inter-
sected as Bézier curves. Curves are split into segments based on

the curve basis; these segments are then stored in a regular axis-
aligned BVH. Because long diagonal curves are common, we also
bound each with an oriented cylinder, which can more effectively
cull ray misses. If a ray intersects the cylinder, then we do a com-
paratively more expensive ray-curve intersection test (Nakamaru
and Ohno 2002). All these steps are done in SIMD, such as testing
four cylinders at a time. Point primitives are also intersected four
at a time using SIMD.

3.3 Volumes and Implicit Surfaces

Detailed fluid-simulation effects like pyrotechnics and water are
typically described by volumetric data that is highly non-uniform.
Arnold has both a volume integrator and an implicit surface
solver, and to improve their efficiency we require volume plug-in
nodes to provide intervals along a given ray where there is valid
or interesting data. Tight ray bounds can significantly speed up
the volume integration and the convergence of the numerical
implicit solver. By requiring the plug-ins to calculate ray intervals
on the fly, no additional acceleration structures nor caches need
to be built beyond the native representation. Hierarchical volume
structures such as OpenVDB already provide methods for quickly
determining valid-data intervals (Museth 2013). During the devel-
opment of our OpenVDB plug-in for Arnold, we added support for
ray intersections and gathering of ray extents through leaf cells,
which we contributed to OpenVDB as its first full implementation
of ray tracing.

3.4 Ray Acceleration Structures

When Arnold was introduced, uniform grids were seen as fast to
build and traverse. For instance, it was around the same time when
the first interactive ray tracer was presented, and it was based on
grids (Parker et al. 1999). At the time, SIMD was not used for ray
tracing, motion-burred geometry was a rarity, and scenes were
simple enough that the “teapot-in-a-stadium” problem1 could of-
ten be easily avoided in a one- or two-level grid.

Since then, SIMD was shown to be widely beneficial for ray trac-
ing, including ray casting in grids (Wald et al. 2006), but was never
shown to be practical for tracing incoherent rays through a grid.
Motion blurred objects and complex scenes were becoming more
important for production rendering, which are hard to support in
a grid. Once it was shown how BVH structures could lift these
limitations (Wald et al. 2007, 2008), Arnold switched completely
over to using such structures. At present it employs a 4-wide BVH
(Wald et al. 2008) built using a binned surface area heuristic (SAH)
method (Popov et al. 2006). Rays are traversed serially through
the BVH using our robust SIMD traversal algorithm to ensure that
valid intersections are not missed during traversal due to numeri-
cal precision errors (Ize 2013).

3.4.1 Parallel On-Demand Construction. The first ray that in-
tersects the bounds of a geometry node initiates its BVH construc-
tion. If, in the mean time, other rays hit the node, then their threads
will join this effort instead of simply blocking in anticipation for

1A failure case for acceleration structures based on uniform space subdivision: A grid
built over a physically large scene will have its cells so large that a comparatively
small but geometrically complex object can end up being fully contained within a
single cell.
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the construction to finish. Despite this added complexity, our par-
allel construction is fast. On a dual E5-2697 V3 CPU it can build
the popular 7.2M-triangle Stanford Asian Dragon model in 0.31s
(23M tri/s) on its 56 logical cores and in 5.6s on a single core (1.3M
tri/s). This is close to linear scaling when factoring in the Intel’s
Turbo Boost 3.6GHz of the single core build versus the 2.6GHz
when using all cores. Furthermore, the parallel build running with
one thread does not have any significant time overhead compared
to a dedicated serial-build implementation. This is important, since
it is common for many small objects to end up being built by just
a single thread.

In addition to time efficiency, memory efficiency during con-
struction is also important. Even a brief spike in memory usage
during construction can be enough to exceed a system or user-
imposed memory quota and cause Arnold to be abruptly termi-
nated. This means we can only use parallel BVH construction
strategies that do not consume significant amounts of memory, es-
pecially at high thread counts. Our parallel construction only has
a small constant-sized memory overhead over a dedicated serial
implementation.

3.4.2 Tree Quality. Every geometry node in Arnold has its own
separate BVH, which is a consequence of the on-demand process-
ing. The resulting multi-level BVH, which can be arbitrarily deep
due to nested procedurals (see Section 3.5.4), allows for fast time to
first pixel. However, it also results in overall slower renders com-
pared to building a single BVH over the entire scene geometry.
Testing on the bathroom scene from Figure 4, a single BVH over
the entire geometry, combined with other aggressive BVH and tri-
angle intersection optimizations, halved our traversal and inter-
section time. However, the total render time improved modestly
by just 9%, because only about 20% of it was spent on ray traversal
and intersection tests. Interestingly, 26% was spent on sampling
the two light sources in the scene, excluding the shadow ray cast-
ing. A further 10% was spent on pre-shading computations, i.e.,
ray differentials, normals.; 9% on the relatively simple texturing;
and the rest of the time was split up among various other areas.
While not fully representative of an actual production scenario,
this test shows that render times today are not dominated by ray
tracing, and therefore the returns from accelerating it further are
diminishing.

The improvement from BVH merging will be larger for input
scenes where the individual BVHs overlap substantially; such
scenes are common in practice. Unfortunately, inserting the
node’s contents into a global BVH on-demand is challenging to
do correctly and efficiently in a thread-safe manner. Despite this
challenge, we would like to eventually support this so that users
do not need to concern themselves with overlapping objects.

3.5 Memory Efficiency

Our choice of in-core path tracing requires all scene geometry to
fit in memory. We ameliorate this through the use of various tech-
niques for compressing data and eliminating redundancies as well
as by choosing a balance between render time and memory usage.
For instance, we forgo the speed improvement that comes with
spatial splitting in BVHs (Popov et al. 2009; Stich et al. 2009), be-
cause we feel it does not justify the potential memory increase.
Furthermore, since BVH performance is often not the dominant

Fig. 4. This scene comprises 152 meshes totaling 402K triangles and takes
9% longer to render with Arnold’s multi-level BVH (two-level in this case)
than with a single flattened BVH.

cost in our renderer, it is easier to turn down BVH optimizations
that increase memory.

3.5.1 Array Compression. We employ both lossless and lossy
compression of data arrays. For example, meshes with fewer than
256 vertices could have their indices exactly stored each in just an
8-bit integer. Additionally, shading normals can be packed from
12 bytes (3 floats) into 4 bytes each with negligible loss of accuracy
(Engelhardt and Dachsbacher 2008).

3.5.2 Polygon Representation. Storing quads instead of trian-
gles as base primitives, when applicable, offers substantial mem-
ory savings in both meshes and BVHs. For instance, if all pairs of
triangles in a mesh can be converted to quads, then the number
of primitives is halved, which in turn can approximately halve the
number of nodes in the BVH built for that mesh.

3.5.3 Instancing. Another common method for reducing mem-
ory footprint is through instancing of geometry nodes to allow
for compact description of massive scenes containing vegetation,
crowds, debris, cities, and so on. While the traditional implemen-
tation only allows overriding transformations and materials, we
include nearly all non-geometry object attributes. For example, we
support overriding UVs, face color, and vertex colors per instance.
This flexibility makes it easier for artists to add interesting varia-
tion while keeping the scene in core.

3.5.4 Procedural Nesting. The child nodes of a procedural can
themselves be procedurals to form a potentially deep node hierar-
chy. Additionally, an Arnold .ass file can be referenced in another
.ass file as a procedural, i.e., as a native form of on-disk cache of
scene data. When used in this manner, repeated references of the
same .ass file will be automatically created as instances of the
corresponding procedural node to save memory. This was used to
great effect in films with massive environments, such as the ring-
shaped space station in Elysium (Figure 5). The ring comprises four
instanced quadrants, which in turn recursively contain groups of
instanced trees and houses with substantial variation getting down
to the level of a single object. The geometric structure of the station
was effectively represented by a complex directed acyclic graph of
.ass files referencing each other.
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Data Usage

Polygon meshes 4,015 MB
Indices 2,031 MB

Vertices 1,266 MB

Normals 441 MB

UV coordinates 180 MB

BVHs 2,528 MB
Node overhead 800 MB
Instance overhead 456 MB

Total 8,784MB

Fig. 5. The production version of the Elysium station (left, middle) comprised 5 trillion triangles thanks to the use of multi-level instancing of .ass files and
Arnold’s space-efficient geometry structures. The incomplete version of the scene we have, with no textures and only 4 trillion (144 million unique) triangles,
requires about 9GB of RAM to render with the current Arnold version (5.0.2). A partial memory-usage breakdown is shown on the right. We suspect that
with textures (studio used 4GB of texture cache) and the additional missing data (max. 2GB), it would require at most 15GB. ©2013 CTMG, courtesy of

Whiskytree.

4 RENDERING

Predictably scaling rendering performance and image fidelity with
increasing complexity is important as it helps artists find a good
balance between quality and resource usage. To that end, prevent-
ing image artifacts, especially flickering in animation, and extreme
noise in difficult lighting configurations is also of particular im-
portance. We aim to optimize Arnold’s scalability under the hood
without exposing undue complexity to the user. However, avoid-
ing pathological performance in corner cases sometimes requires
user intervention.

4.1 Path Tracing

Arnold’s rendering subsystem is based on brute-force path tracing
from the camera with direct lighting computation (Kajiya 1986),
a.k.a. next-event estimation, and optional splitting at the first vis-
ible surface and/or medium. Beyond controls for adjusting sample
counts and number of bounces, few details about the process are
exposed. The rule of thumb for reducing noise today is to simply
increase the number of camera samples (paths per pixel, etc.) and
keep the splitting factors (diffuse, glossy, etc.) at one. Tweaking
individual splitting factors was more productive in the past when
few lighting effects and short paths were used.

We adhere to this simple algorithm, because its basics are easy
for users to understand and therefore control, and it performs well
in the most common lighting configurations encountered in pro-
duction, such as open environments and character-centered shots.
However, this is also where our two goals of speed and simplicity
can also conflict. For instance, caching-based algorithms, such as
irradiance caching (Ward et al. 1988) and photon mapping (Jensen
2001), do often allow for faster renders. However, they are also
prone to temporally flickering image artifacts that require addi-
tional tweaking to ameliorate, or their performance and mem-
ory footprint may not adequately scale in complex scenes and on
many-core hardware. Sophisticated bidirectional methods are gen-
erally more robust to varying lighting configurations than unidi-
rectional path tracing (Georgiev et al. 2012; Hachisuka et al. 2012),
but in the vast majority of production scenes they result in slower
renders and also complicate the computation of ray differentials

w.r.t. the camera. Markov chain methods (Hachisuka et al. 2014;
Jakob and Marschner 2012) have similar issues and in addition pro-
duce correlations in the pixel estimates that are highly prone to
flickering in animation. Adding these as optional modes in Arnold
would go against our goal of simplicity and could paradoxically
result in slower renders. An alternative production solution worth
investigating is unidirectional path guiding (Müller et al. 2017).
Such techniques, however, involve caching, which adds code com-
plexity, especially with motion blur, and is prone to flickering in
animation.

4.2 Aggressive Variance Reduction

While unidirectional path tracing is not generally prone to arti-
facts, it can suffer from extreme noise under strong and focused
indirect light. Some experienced users know how to work around
certain special cases. For example, they will avoid placing light
sources close to geometry and will model a recessed luminaire by
using an invisible planar light source at the opening. Alternatively,
they will clamp the illumination range of such sources to some
minimum distance. However, more general cases involving multi-
bounce light transport and/or glossy surfaces require more gen-
eral approaches. One technique we employ to avoid noise from
rare but intense light paths is to clamp the total as well as only
the indirect illumination contribution of every camera sample to a
user-set threshold.

A more elaborate noise suppression approach is to take advan-
tage of the obscuring effects of light bouncing at diffuse or rough
glossy surfaces. High-frequency illumination details often cannot
be seen through such bounces but remain very difficult to simu-
late with a path tracer. Arnold by default employs techniques that
avoid having to deal with such paths in a way that tries to be as
energy preserving as possible. This includes adaptively increas-
ing surface roughness (a.k.a. path space regularization (Kaplanyan
and Dachsbacher 2013)) and skipping specular caustic paths. Sur-
face roughness is clamped to a minimum value dependent on the
maximum roughness seen along the path. This blurs caustics but
can substantially reduce the variance of indirect lighting while re-
taining the overall effect.
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Fig. 6. Rendering this flyover of London with a million light sources at
about 1.5 hours/frame on a 2013-era computer was made possible by using
the low-light threshold and our light BVH, which allowed for sampling
roughly 50 lights per shading point. ©2013 Company Pictures/Stormdog.

4.3 Light Source Culling

For efficiency reasons, Arnold ignores light sources whose ex-
pected contribution to the point being shaded is below some user-
set threshold. While estimating the contribution of point lights
is trivial, area lights are more complicated because of geometric
factors and potentially textured emission. While we could do the
estimation by sampling the light for every shading point, a much
more efficient and scalable approach is to instead compute an
axis-aligned bounding box for the region of influence of every light
and then ignore those whose bounding boxes do not contain the
point being shaded. We create a BVH over these boxes that we tra-
verse to quickly find at each shading point the list of significantly
contributing lights, which we then sample for direct illumination.

The culling technique works well for most scenes and allows
scaling to many lights. For instance, Figure 6 shows a nighttime
scene of London illuminated by a million lights, where most shad-
ing points required sampling of only around 10 to 50 lights, with
a few small regions requiring around a hundred.

Our technique can, however, completely fail in certain situations
where lights have little individual influence but combined are sig-
nificant, such as if a TV screen has each pixel modeled as a separate
light. These failure cases can often be solved by combining the in-
dividual lights into a larger textured area light. A single light is also
faster and easier to sample. Still, it would be preferable if artists did
not have to work around these corner cases. Stochastic light selec-
tion is a promising approach that allows for a fixed light-sample
budget per shading point (Conty and Kulla 2017) in contrast to our
current approach of sampling each significant light at least once.

4.4 Motion Blur

Arnold mainly targets rendering of dynamic production scenes, for
which correct and efficient rendering of motion blur is essential.
We support two types of motion with an arbitrary number of keys,
i.e., time samples, per node. Transformation motion is specified
by an affine matrix, while in deformation motion the shape of the
object, e.g., its mesh vertices and normals, changes over time.

4.4.1 Deformation Blur. For meshes with deformation motion,
we build one BVH over every pair of motion keys. Each pair gives
the start and end primitive bounding boxes that when linearly in-
terpolated during BVH traversal will contain the moving primitive.

4.4.2 Volumetric Blur. For grid-based volumetric data, such as
OpenVDB, we implement Eulerian motion blur (Kim and Ko 2007).
Each time a data channel is sampled, the velocity channel is
queried first at the sampling location and once again along that
velocity at the time of shutter open. We then use this estimated
velocity to backtrack a position where the data channel is finally
queried. Note that this requires the simulation to have sufficient
padding of the velocity channel.

To not miss any potential ray intersections with data in motion,
the active cells of the volumetric data are conservatively dilated by
the maximum velocity times the duration of the frame. Being the
result of a simulation, the velocity channel can be very noisy and
often contains locally very high values. This can make the conser-
vative dilation too large and explode the render times of motion-
blurred volumes. To mitigate the issue, we have added an outlier
filter to remove extreme velocities. This keeps the bounds expan-
sion within control in the presence of erroneous velocity values,
with correspondingly smaller ray intervals through the volume
that must be integrated and sampled (see Section 3.3).

A future improvement would be to dilate the bounds more in-
telligently. Eulerian motion blur is costly as it needs two addi-
tional lookups to estimate the velocity. Temporally unstructured
volumes could make volume sampling more efficient (Wrenninge
2016); however, they require pre-processing and a non-standard
data structure currently unsupported in most simulation packages.

4.5 Textures

Especially in film, it is not uncommon for a given frame to
reference an entire terabyte of uncompressed floating-point
texture maps with 8K or even 16K resolution each. Some of these
textures, e.g., for displacement of vertices, may only need to be
used once and so need not persist in RAM for the entire duration
of rendering. However, most other types of textures are made
for object shading and will be accessed repeatedly and at random
due to the incoherent nature of path tracing. This necessitates
either storing such textures in RAM or rescheduling the texture
evaluation (Eisenacher et al. 2013). Even without limitations in
RAM size, simply fetching all this data from a local or networked
disk, even in compressed form, could easily take an hour, or much
more if the file servers or network are saturated with texture
requests from the render farm.

4.5.1 MIP-Mapping and Ray Differentials. As Pharr (2017)
points out, most, if not all, film renderers attempt to get around
the aforementioned issue by using ray differentials (Igehy 1999) to
read in from disk tiles of texture data at the MIP map level required
for properly displaying the texel without aliasing or over-blurring
artifacts. This often allows for an order or two of magnitude reduc-
tion in the working set of texture data that must be read in from
disk.

Ray differentials can be extended to account for surface rough-
ness, e.g., by widening the ray footprint after glossy reflections
(Suykens and Willems 2001). Unfortunately, such differentials can
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be difficult to derive and costly to compute, especially with com-
plex materials. Simpler approximations have therefore been pro-
posed (Christensen et al. 2003). Arnold takes a middle ground
and tracks the ray differentials of Igehy (1999), but not the ad-
ditional partial derivatives of Suykens and Willems (2001), and
instead widens the ray differentials according to a microfacet-
inspired heuristic. More principled approaches have recently been
proposed that we would like to investigate, such as that of (Belcour
et al. 2017).

4.5.2 Texture Mapping. Arnold provides direct support for UV
texture mapping, tile-based schemes such as UDIM, and projective
textures. These parameterizations work well with MIP-mapping:
A few texels from an appropriately chosen MIP map level can be
reused over all the shading points within the ray footprint. For
large enough footprints, these few texels could be shared by many
triangles, or at the limit, by even the entire mesh. This can result in
extremely efficient texture usage and thus rendering performance.

Generally, the highest-resolution MIP map reading will take
place at objects directly seen from the camera. Such spatially co-
herent shading points are trivial to sample, e.g., via tile-based ren-
dering, allowing successive lookups to often use the same texture
tile. Once that image region is rendered, that high-resolution tile
will likely never be used again and so can be quickly evicted from
memory.

4.5.3 Texture Caching. The minimum required amount of tex-
ture data can still be too large to fit in the often small amount of un-
claimed RAM, so we use the texture cache of OpenImageIO (2008)
to further reduce memory usage. Generally a 2 to 4 GB cache,
shared by all render threads, suffices. As Pharr (2017) shows, a well
implemented texture cache can scale to many cores.

4.6 API and Shaders

Arnold provides a C++ API for populating and introspecting the
scene as well as for implementing custom nodes via callbacks, such
as volumes, procedurals, and most notably shaders. Over the years,
users and third parties have leveraged the API to add capabilities
often unforeseen by us. These include texture baking via special-
ized cameras that map texture space to camera space, as well as
shader extensions that output extra data to facilitate post-render
object-mask extraction.

Shaders may be written in C++ or Open Shading Language
(OSL) (Gritz et al. 2010), where both can be intermixed within
the same shader network. A C++ shader is free to return a (color)
value computed in an arbitrary way: it can cast rays with custom
payload and even integrate the incident light at the query point.
The provided flexibility has been particularly useful in the past for
users implementing features such as light portals, ray-marched
heterogeneous media, and layered shading models (Langlands
2015). Unfortunately, exposing this level of flexibility has also
had negative consequences: shader writers could go overboard
and implement entire custom rendering engines within shaders,
which we could not support easily. This also limited Arnold’s
potential as it became increasingly difficult to make rendering
improvements without breaking the API.

Over time, we have added enough missing functionality to re-
duce the need for shaders to act as light integrators themselves.

Fig. 7. Each of M
2 camera rays can split into N

2 paths using a CMJ pat-
tern; here, M =N =2. These M

2 patterns of size N
2 each (left) are con-

structed in a way that their union is itself CMJ pattern of size (M N )2

(right).

Arnold now encourages users to write shaders that instead return
a closure, which describes the bidirectional scattering distribution
function (BSDF) at the point being shaded (Pharr et al. 2016). This
paradigm reduces flexibility somewhat but also allows Arnold to
improve its built-in algorithms and techniques such as multiple im-
portance sampling (MIS) (Veach and Guibas 1995) transparently to
shaders. The closure paradigm allows users to focus their shader
development on what matters most to them anyway—the spatially
varying object appearance. OSL offers a friendly syntax for writing
such shaders. OSL shaders also often perform faster than their C++
counterparts, since their just-in-time compilation can optimize the
code of entire complex shader networks.

5 THE IMPORTANCE OF SAMPLING

Improving sampling efficiency has been instrumental for in-
creasing Arnold’s rendering performance over the years. Thanks
to the use of (better) importance sampling techniques, many
noise-inducing components have substantially improved in qual-
ity transparently to users. Furthermore, turning certain determin-
istic evaluations to stochastic via techniques like Russian roulette
(Arvo and Kirk 1990) has made rays cheaper and has allowed us
to simulate more effects, to eliminate all illumination caching, and
to use fewer approximations, thereby reducing memory usage and
simplifying users’ workflow.

5.1 Sampling Patterns

An efficient way to reduce noise is to use high-quality stratified
sampling patterns. Arnold employs correlated multi-jittered (CMJ)
patterns (Kensler 2013), which we have extended to two levels so
that splitting paths at the first shading point does not introduce
additional noise compared to tracing correspondingly more cam-
era rays. That is, we make sure that the union of the CMJ split-
ting patterns for all camera rays in a pixel is also a CMJ pattern
(Figure 7).

A single CMJ pattern can be used for every sampling decision
inside a pixel, if individual decisions are properly decorrelated.
We accomplish this by applying pseudo-random shuffling and
Cranley-Patterson (CP) rotation (Cranley and Patterson 1976) to
the samples.

We also use the same CMJ pattern for every pixel. When do-
ing so, traditional wisdom dictates pixel decorrelation, e.g., via CP
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rotation with a randomly chosen offset per pixel. However, we
have found that by instead carefully correlating these CP offsets
across pixels, the visual perception of the resulting noise distribu-
tion can improve substantially (Georgiev and Fajardo 2016).

For every pixel, for each sampling dimension, we can simply
look up the pattern CP offset in a pre-computed blue-noise mask.
However, using the same mask for every dimension would in-
troduce correlations as all dimensions would offset the sampling
pattern by the same amount. To avoid correlations, we pseudo-
randomly shift the blue-noise mask in image space for each sam-
pling dimension.

Unfortunately, randomly shifting the dither mask ruins the
desirable blue-noise error distribution in cases when multiple
sampling dimensions contribute significantly to the pixel vari-
ance. Ideally, a single high-dimensional mask should be used, but
achieving high-quality blue-noise in more than a few dimensions
is difficult (Reinert et al. 2015). Nevertheless, the technique is very
cheap, and the cases where a single sampling dimension, e.g.,
motion blur or direct illumination, is the major noise contributor
are surprisingly common.

5.2 Area Light Sources

Accurate illumination from area light sources has been a ma-
jor selling point of path tracing for production rendering. Such
sources are now so ubiquitous that any improvement in their
sampling efficiency will benefit virtually every rendering job. For
years, Arnold used the traditional approach of combining uniform
light surface and BSDF sampling via MIS. We have subsequently
developed techniques for uniformly sampling the solid angle sub-
tended by quad- and disk-shaped luminaires (Guillén et al. 2017;
Ureña et al. 2013). Apart from bringing valuable noise reduction,
the use of these techniques has allowed us to skip BSDF sampling
for diffuse surfaces and phase-function sampling for isotropic me-
dia, and thereby avoid MIS altogether in such cases for an addi-
tional speed-up. We have also adopted the technique of Conty and
Kulla (2017) for approximate solid angle sampling of polygon mesh
light sources.

5.3 Participating Media

Rendering participating media has always been challenging for
production renderers, even when only simulating single scatter-
ing, and Arnold has been no exception. To address this, we have
developed two techniques for importance sampling the direct illu-
mination from a light source along a given ray (Kulla and Fajardo
2012).

Equiangular sampling chooses a propagation distance along the
ray proportionally to the inverse squared energy falloff of a given
point on a light source. This technique can substantially reduce
variance for rays passing close to the light source.

Decoupled ray marching traverses the medium and builds a
table that is subsequently used to importance sample distances
along the ray proportionally the product of the transmittance and
the medium scattering coefficient. This allows us to decouple the
medium and light sampling rates from one another in contrast to
the traditional approach (Perlin and Hoffert 1989) and also to ig-
nore medium regions that do not scatter light, i.e., with zero scat-
tering coefficient.

These two techniques importance sample different terms in
the single-scattering light contribution and thus complement each
other. We therefore combine them via MIS.

Our heterogeneous media implementation relies on ray march-
ing, which is biased (Raab et al. 2008) but can in practice work bet-
ter than state-of-the-art unbiased tracking techniques (Kutz et al.
2017). First, it samples the medium with a stratified regular pattern,
yielding a less noisy transmittance estimate. Second, while increas-
ing the marching step size (to make ray computation cheaper) in-
creases the bias, the variance of a stochastic tracker can explode
exponentially when increasing its expected step size. Ray march-
ing thus fails more gracefully. Unfortunately, though, the bias can-
not be reduced by simply firing more rays, and the step size has
to be hand-tuned per volume as we have no heuristic for doing
that automatically. Devising more efficient unbiased techniques is
therefore important.

5.4 Subsurface Scattering

Arnold’s first subsurface scattering (SSS) implementation was
based on diffusion point clouds (Jensen and Buhler 2002), which
worked well with few translucent objects that were close to the
camera but had several major drawbacks. Every translucent ob-
ject, and its every instance, required a separate cache. This ap-
proach does not scale well: Even with a parallel implementation,
the cache construction time could be substantial, especially with
many translucent objects far away from the camera. Moreover, the
cache density was dependent solely on the SSS profile width, i.e.,
mean free path, and not on the object’s visual importance. Point
density had to be hand-tuned by the user as it was not possible
for Arnold to automatically deduce shader-mapped profile widths.
Too-low density would lead to artifacts, and too-high density could
increase memory usage substantially for no visual improvement.
An “SSS-in-a-stadium” problem2 arose on large objects with a nar-
row profiles, which could only be dealt with by the user painstak-
ingly tweaking the SSS settings to find an acceptable memory-
versus-appearance trade-off. The point clouds also increased the
complexity of pre-render object processing, were prone to flick-
ering in animation, and suffered from inaccurate motion blur as
they were computed for one time instant and assumed constant
illumination across motion.

The key to solving these issues was the realization that the
SSS illumination blurring integral could also be estimated on-
the-fly during rendering. To this end, we developed a method for
sampling surface points in the vicinity of a given shading point
by importance sampling the SSS profile (King et al. 2013). This
drop-in replacement for point clouds streamlined SSS rendering
without changing the look. It solved the SSS-in-a-stadium prob-
lem by allowing arbitrary profile widths and only paying for SSS
computations for rays that actually hit translucent objects. It also
made it possible to render dynamic scenes made entirely of such
objects, as showcased in Figure 8. We currently use the SSS profile
of Christensen and Burley (2015).

The simple diffusion-based illumination blurring approach suf-
fers form lack of energy conservation when the SSS profile is large

2This is a pun on the notorious “teapot-in-a-stadium” problem mentioned in
Section 3.4.
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Fig. 8. Everything in this commercial is made of milk, which would not
have been possible with our previous point-cloud based SSS solution due
to the low-frequency noise introduced by the mesh topology changing per
frame. Milk ©2013 Czar.be, courtesy of Nozon.

compared to the size of the geometry features, i.e., in optically thin
object regions. This is because SSS profiles are normalized under
the assumption of (at least locally) flat surface, which is almost
never the case in practice. The issue is exacerbated when paths
bounce multiple times off translucent objects, which we are forced
to clamp. To address this, we have recently implemented a much
more accurate method that performs a volumetric random walk
inside the object, very similar to that of Wrenninge et al. (2017).
While often slower than diffusion, this method can be faster in the
cases where the former struggles most—optically thin objects. We
still provide the diffusion-based option for cases where it is faster
or easier for artists to derive the look they desire.

5.5 Hair Scattering

Rendering hair is important in modern production but used to be
very expensive in Arnold when hairs were semi-transparent, ei-
ther for artistic reasons or because of the minimum-pixel-width
setting (see Section 3.2). To make illumination computations on in-
dividual hairs cheaper, we previously reduced the number of rays
by simulating only direct and one-bounce diffuse indirect illumina-
tion. The direct illumination was cached for each hair segment and
interpolated along it for indirect rays. This could speed up render-
ing by over 3×. Unfortunately, caching did not work well for spec-
ular illumination, which had to be skipped altogether. As a result,
the output was not realistic-looking but rather flat and cartoony.

To cheaply approximate the speculars, users tried various ap-
proaches, such as dual-scattering (Zinke et al. 2008). Similar to
diffusion-based SSS, such approximations broke energy conserva-
tion and could not be applied recursively for multi-bounce lighting.
Achieving a realistic look was difficult, especially in light-colored
hair. The diffuse cache also suffered from the same issues as SSS
point clouds: additional memory usage, animation flickering, in-
accurate motion blur, and increased start-up delay in progressive
rendering. We had to find a way to remove the cache and afford
tracing large numbers of rays through hair efficiently.

The key to making hair rays cheaper was the addition of sto-
chastic transparency, which avoids the shading and lighting of ev-
ery single transparent hair along a ray by randomly treating hairs
as fully opaque or fully transparent based on their opacity. This
technique increases noise but also efficiency, allowing for a greater

amount: 0.2 amount: 0.5 amount: 1.0

ratio: 1ratio: 0

Fig. 9. An illustration of varying the hair darkness by changing the total
amount of melanin (top row) and the hair redness by changing the ratio
of pheomelanin to eumelanin (bottom row). Note that lighter hair is more
expensive to render as it requires simulating more light bounces.

sample budget. It allowed us to remove the hair cache and to sim-
ulate more light bounces. This in turn enabled the adoption of
modern realistic hair scattering models (d’Eon et al. 2011; Zinke
and Weber 2007). These allow for accurate rendering of blond hair,
which requires many specular bounces (Figure 9, top left). In prac-
tice, users are not always after realism, however, and a cartoony
look or simpler animal fur is sometimes desired, for which we
still provide a cheaper legacy hybrid model (Kajiya and Kay 1989;
Marschner et al. 2003).

6 COLOR AND OUTPUT

To fit various imaging and post-production needs, Arnold provides
color management control over the input, output, and rendering
stages, as well as customizable render data outputs.

6.1 Color Spaces

Adding effects such as physical sky illumination, blackbody radi-
ation, melanin absorption (Figure 9), or dispersion to an RGB ren-
derer like Arnold requires converting between spectral distribu-
tions and RGB coefficients. Such conversion requires knowing the
chromaticities of the rendering RGB color space (Fairchild 2005).
We recently enabled users to specify these chromaticities and also
added input and output image color conversion via SynColor and
OpenColorIO (2010). This in turn also allowed users with specific
color needs to work in the space of their choice.

The recent adoption of wide-gamut formats highlights a defi-
ciency of the RGB rendering done by Arnold compared to true
spectral rendering. Light transport is spectral in nature, and ap-
proximations like multiplying an RGB albedo with RGB irradiance
are typically acceptable in narrow-gamut spaces like sRGB. How-
ever, for higher-saturation colors in wide-gamut spaces such as
ACEScg (Duiker et al. 2015) or Rec. 2020 (Sugawara et al. 2014),
these approximations yield increasingly inaccurate results and
color shifts (Meng et al. 2015; Ward and Eydelberg-Vileshin 2002).
Thus far, users working in wide-gamut spaces have been able to
compensate for such shifts during look development and lighting.
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Fig. 10. A scene rendered using 64 camera rays per pixel, with one deep
surface sample and multiple ray-marched deep volume samples per ray.
With the default quality setting, our deep compression method reduces the
storage for every pixel to between 0.5% and 7.5% of the samples produced
by the renderer, as visualized in the false-color inset image. The size of the
960×540 32-bit-per-channel deep EXR file reduces from 3.92GB to 153MB
(4% of the raw input). The flat “beauty” EXR output is 8.1MB large.

Ultimately, though, physically accurate results require spectral
rendering.

6.2 Deep Output

Apart from “beauty” images, Arnold supports rendering arbitrary
output variables (AOVs), i.e., auxiliary images of partial shading
and illumination data used for debugging, denoising, and post-
editing. Custom AOVs can be produced via programmable shaders
and light path expressions (Gritz et al. 2010; Heckbert 1990). Ren-
dering 30+ AOVs per frame is not uncommon in production, and
Arnold is optimized to efficiently accumulate an arbitrary number
of them during path tracing. Post-render tasks such as compositing
and depth-of-field effects also benefit from so-called “deep” AOVs,
i.e., with multiple values per pixel at different distances from the
camera. Minimizing disk footprint is then important as the size of a
single raw deep EXR file (OpenEXR 2014) can easily go over 100GB.

To keep deep AOV disk usage manageable, the number of stored
samples for every pixel can be compressed (Lokovic and Veach
2000). Our method greedily merges pairs of samples with similar
depths based on a user-set error tolerance. This gives best results
when the entire set of input samples is available at once, after fin-
ishing the pixel. With many AOVs and high sampling rates, the
scheme is prone to high memory usage. To avoid caching all input
volumetric samples, we compress them on-the-fly earlier, during
ray marching. The resulting output file size scales strongly sub-
linearly with the number of input samples per pixel and depends
mostly on the depth complexity of the visible parts of the scene, as
illustrated in Figure 10.

7 CONCLUSIONS

We have found that there is no panacea for rendering
performance—it is the sum of many optimizations and user
workflow improvements that have made path tracing a practical
and robust solution for production. We have presented in this
article a snapshot of the techniques we use to achieve this.

Key strategies have been to improve user productivity by
eliminating pipeline steps, intermediate caches, and extraneous

controls. This enables us to optimize performance without in-
troducing complexity to users. We judiciously trade performance
for usability improvements and streamlined predictability in both
memory and time usage. We seek to minimize the time to present
the first pixels to the user during interactive rendering sessions,
rather than focus solely on final-frame performance.

Scalability to many cores is an area in which Arnold excels,
whether tracing rays, calculating shading, or sampling textures
or volumes. Our goal, largely met, has been to scale linearly with
the number of cores no matter the type of visual complexity be-
ing generated. As hardware becomes faster and capable of tracing
more rays per second, and as new algorithms emerge, we expect
that Arnold will evolve to become even simpler to use, along with
delivering higher quality and interactivity.
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