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We introduce a general framework for transforming biased estimators into

unbiased and consistent estimators for the same quantity. We show how

several existing unbiased and consistent estimation strategies in rendering

are special cases of this framework, and are part of a broader debiasing prin-

ciple. We provide a recipe for constructing estimators using our generalized

framework and demonstrate its applicability by developing novel unbiased

forms of transmittance estimation, photon mapping, and finite differences.
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1 INTRODUCTION

From estimating the amount of radiance reaching a camera sensor,

to estimating how much light transmits through a participating

medium, there are countless situations in graphics which require

estimating intricate integrals. While we have developed a large ar-

senal of unbiased estimation techniques, situations still arise where

we must fall back on biased formulations.

We consider problems where we need to compute some finite

quantity 𝐼 , but we only have a biased estimator ⟨𝐼 (𝑘)⟩ with a control-
lable amount of bias—dictated by some parameter 𝑘—at our disposal.

By adjusting the bias parameter towards some limit (e.g. 𝑘 → ∞)

the estimator’s expected value 𝐼 (𝑘) approaches the correct answer:
𝐼 = lim

𝑘→∞
𝐼 (𝑘) . (1)

The bias parameter 𝑘 could be continuous or discrete; for example,

a discrete 𝑘 could represent the maximum path length in a path

tracer, while a continuous 𝑘 could correspond to the step size in ray

marching or the kernel radius in photon mapping. We assume 𝐼 (∞)
cannot be estimated directly e.g. due to computational constraints,

and only biased estimates of 𝐼 for finite values of 𝑘 are available.
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When faced with a situation like Eq. (1), one existing approach

in graphics is to at least form a consistent estimator in which both

bias and variance are guaranteed to vanish, though only in the limit

of infinite work. This can be done for certain classes of problems,

like progressive photon mapping approaches [Hachisuka et al. 2010;

Hachisuka and Jensen 2009; Jarosz et al. 2011b; Knaus and Zwicker

2011], by averaging realizations of the biased estimate while care-

fully controlling the bias parameter 𝑘 to ensure convergence.

In this paper we instead introduce and extend a recent set of

techniques from the statistics literature for entirely debiasing biased
estimators. Our framework can provide unbiased solutions to prob-

lems ranging from estimating transmittance in non-exponential

media, to computing unbiased derivatives, to creating unbiased

versions of entire global illumination algorithms like (progressive)

photon mapping.

To debias a chosen problem, we decompose the unbiased quantity

𝐼 = 𝐼 (𝑘) +
∞∑
𝑗=𝑘

Δ 𝑗

𝐵 (𝑘)

(2)

into a biased value 𝐼 (𝑘) and an infinite sum representing the bias

𝐵(𝑘) B 𝐼 − 𝐼 (𝑘). We then form unbiased estimators for both terms.

There are many different ways to transform a problem into an in-

finite series in the form of Eq. (2), all differing by their construction

of Δ 𝑗 . In the following two sections we will discuss two such trans-

formations and their utilization in prior work for isolated problems

in graphics. The first one involves eliminating the bias via a Taylor

series (Sec. 2), and the second does so via an initial-value integral or

a corresponding discrete telescoping-series transformation (Sec. 3).

In Sec. 4 we will discuss how to formulate estimators for Eq. (2)

which encompasses both the Taylor and telescoping formulations.

By carefully constructing estimators so that 𝐵(𝑘) vanishes in the

limit, we can formulate unbiased solutions for all problems in the

form of Eq. (2). However, not all such solutions can be achieved

with both finite variance and finite work, despite their guaranteed

eventual convergence by the law of large numbers. For those cases,

we show how to still formulate unbiased estimators (Sec. 4.4) and,

alternatively, derive consistent progressive estimators (Sec. 4.4).

We provide a general recipe for creating unbiased estimates out

of biased estimators (Recipe 1). In Sec. 5 we show how our recipe

can be applied to estimate a variety of problems, including novel

unbiased non-exponential transmittance [Bitterli et al. 2018] esti-

mation, unbiased variants of (progressive) photon-mapping, and

unbiased (for smooth functions) and progressive (for discontinuous

functions) finite difference estimators that can be used as ground

truth when developing differentiable rendering techniques. We pro-

vide full implementations on GitHub [Misso et al. 2022].
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2 TAYLOR-SERIES DEBIASING

One common problem that arises in graphics is the need to form

estimators for integrals 𝐹 which are nested inside some non-linear

function 𝑔:

𝐼 B 𝑔(𝐹 ) = 𝑔
(∫
Ω 𝑓 (𝑥) d𝑥

)
. (3)

For instance, 𝑔 could be the reciprocal function when estimating a

normalization factor, or the exponential function when estimating

volumetric transmittance. Naively applying Monte Carlo estimation

to the integral 𝐹 will generally yield a biased estimate if the function

𝑔 is non-affine. Outside of graphics, these types of problems are

referred to as functions of expectations [Blanchet et al. 2015].

Assuming 𝑔(𝐹 ) is finite and has a convergent Taylor series about

some expansion point 𝛼 , we can express Eq. (3) as:

𝐼 B 𝑔(𝐹 ) =
𝑘−1∑
𝑗=0

Δ
tay

𝑗

𝐼 (𝑘)

+
∞∑
𝑗=𝑘

Δ
tay

𝑗

𝐵 (𝑘)

, with Δ
tay

𝑗
= 𝑔 ( 𝑗) (𝛼) (𝐹 − 𝛼) 𝑗

𝑗 !
,
(4)

where 𝑔 ( 𝑗) (𝛼) denotes the 𝑗 th derivative of 𝑔 evaluated at 𝛼 . For any
fixed bias parameter 𝑘 , this decomposes 𝐼 into a biased formulation

𝐼 (𝑘) consisting of the first 𝑘 terms of the Taylor series, and the

remaining terms of the Taylor series constituting the bias 𝐵(𝑘). For
instance, when 𝑘 = 1, 𝐼 (𝑘) becomes just the evaluation of 𝑔 at the

expansion point, 𝑔(𝛼), which will generally be a biased evaluation

of 𝐼 unless we happen to choose an expansion point, 𝛼 = 𝐹 , equal

to the integral we want to estimate. The infinite sum then corrects

for this bias (see Fig. 1).

The Taylor expansion effectively separates the evaluation of 𝑔

from the eventual estimation of 𝐹 , thus removing the problematic

non-linearities. While (𝐹 −𝛼) 𝑗 is still a non-linear operation, we can
estimate it in an unbiased manner by treating it as the product of 𝑗

independent evaluations of (𝐹 − 𝛼) [Blanchet et al. 2015; Georgiev
et al. 2019].
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Fig. 1. Equation (4) enables the unbiased estimation of 𝑔 (𝐹 ) using only

unbiased estimates ⟨𝐹 ⟩ of 𝐹 and the analytic derivatives of 𝑔. Starting with

𝐼 (1) = 𝑔 (𝛼) , it progressively adds terms (vertical colored bars labeled Δ𝑗 on

the left) of a Taylor series expansion of 𝑔 (𝑥) (dashed curves), each evaluated

at a stochastic distance ⟨𝐹 ⟩ − 𝛼 .

2.1 Prior work

The Taylor series has not yet been introduced to graphics as a

general debiasing technique; however, formulations like Eq. (4) have

appeared for problems like transmittance and reciprocal estimation,

though they initially arose via other mathematical manipulations.

We will show how these specific instances can be easily derived

directly from Eq. (4).

Reciprocal estimation. We sometimes need to estimate the recip-

rocal of an integral,

𝑔(𝐹 ) B 1

𝐹
. (5)

For instance, this happens in both photon mapping [Qin et al. 2015]

and differentiable rendering [Bangaru et al. 2020] where 𝐹 is a Monte

Carlo sampling probability (density) that is not available in closed

form, so its reciprocal must be estimated numerically. Applying

Eq. (4) to Eq. (5), choosing 𝑘 = 1, and performing some elementary

simplifications provides

𝑔(𝐹 ) = 1

𝛼
+

∞∑
𝑗=1

Δ
recip

𝑗
, where Δ

recip

𝑗
= 𝛼−𝑗−1 (𝛼 − 𝐹 ) 𝑗 , (6)

which can be readily estimated in an unbiased way provided 𝛼 ≠ 0.

Unbiased reciprocal estimation was first introduced to graphics

by Qin et al. [2015] where they imported the technique directly from

the nuclear engineering literature [Booth 2007]. Booth originally

derived his formulation by applying control variates to Eq. (5), then

effectively taking a Maclaurin series expansion (Taylor series about

𝛼 = 0) by pattern matching with the well-known analytical solution

of the geometric series.

Applying control variates then taking a Maclaurin series expan-

sion is equivalent to taking the Taylor series expansion where 𝛼 is

set to the control. Thus, our formulation (6) generalizes the control

function Booth introduced in his derivation. The Bernoulli trial esti-

mation technique later introduced by Qin et al. [2015]—which has

also been used for specular manifold sampling [Zeltner et al. 2020]

and path connections in refractive media [Pediredla et al. 2020]—is

a special case of a prefix sum estimator (Sec. 4) for Eq. (6) when

estimating a reciprocal probability (density). We show that it is also

a special case of the pseries-cumulative estimator [Georgiev et al.

2019] adapted for reciprocal estimation within our full implementa-

tion [Misso et al. 2022].

Exponential-transmittance estimation. Estimating the proportion

of light which passes through a participating medium is a core

component in simulating volumetric transport. The classical trans-

mittance is defined as

𝑔(𝐹 ) B e
−𝐹 , (7)

where 𝐹 = 𝜏 B
∫ 𝑏

𝑎
𝜇 (𝑥) d𝑥 is the optical depth integral over the

medium extinction.

Applying Eq. (4) to (7), setting 𝑘 = 1 and performing some ele-

mentary simplifications allows us to express transmittance as

𝑔(𝐹 ) = e
−𝛼 +

∞∑
𝑗=1

Δ
exp

𝑗
, where Δ

exp

𝑗
= e

−𝛼 (𝛼 − 𝐹 ) 𝑗
𝑗 !

, (8)

which is amenable to unbiased estimation.
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Both Georgiev et al. [2019] and Jonsson et al. [2020] introduced

formulations for exponential transmittance equivalent to Eq. (8),

however, both of these were obtained in a similar fashion to Booth’s

[2007] derivations for the reciprocal: they first applied control vari-

ates directly to Eq. (7) to introduce a majorant, and then applied

a power (Maclaurin) series expansion to the resulting exponential.

One of the major insights from Georgiev et al.’s derivations was

that the majorant used by all prior null-collision based tracking

estimators corresponds to a simple application of control variates.

In contrast, we have arrived at the same formulation as a di-

rect consequence of applying the Taylor series at a user-chosen

expansion point 𝛼 . Our derivation shows that the majorant in null-

scattering methods is simply the Taylor series expansion point.

Kettunen et al. [2021] developed a prefix-sum based estimator for

classical transmittance which exploits the expansion point used in

the Taylor expansion of the exponential function along with a few

other techniques for variance reduction. Their final estimator had a

form similar to Eq. (4). They pointed out that if the first term in their

formulation was separated from the infinite sum (i.e. 𝑘 = 1), then

their estimator debiases an instance of ray-marching. Our derivation

shows that all prior unbiased transmittance estimators which are

derived from a Taylor series expansion can be thought of as a form

of debiased estimation. We will discuss why this is also true for the

Volterra based estimators [Georgiev et al. 2019] in Sec. 3.3.

Outside of graphics. Blanchet et al. [2015] introduced the idea

of the Taylor series as a generalized means of formulating unbi-

ased estimators for functions of expectations. Dauchet et al. [2018]

mentions this idea too in the context of handling non-linearities

with Monte Carlo. Outside of these instances, the Taylor expansion

has been utilized throughout statistics to reduce bias of general

estimators of differentiable functions [Jiao and Han 2020; Withers

1987].

3 INITIAL-VALUE & TELESCOPING-SERIES DEBIASING

While the Taylor expansion is effective in situations where we deal

with smooth functions of expectations, unfortunately not all prob-

lems can be represented this way. Either the function does not have

a convergent Taylor series, or a problem may simply not fit within

the narrow scope of a function of expectations (3), even if it is an

instance of Eq. (1). To handle this, we first derive a continuous for-

mulation, and then show how once it is discretized, it simplifies

to a debiasing technique developed recently within the statistics

literature.

3.1 Continuous formulation

For any 𝑘 , we can define the relationship between the limit 𝐼 and

the expectation 𝐼 (𝑘) of a biased estimate by manipulating Eq. (2),

𝐼 = 𝐼 (𝑘) + 𝐵(𝑘) = 𝐼 (𝑘) + 𝐼 (∞) − 𝐼 (𝑘) . (9)

Assuming that 𝑘 is a continuous parameter and that the derivative

of 𝐼 w.r.t. 𝑘 exists, we can rewrite Eq. (9) as an initial value problem:

𝐼 = 𝐼 (𝑘) +
∫ ∞

𝑘

d

d𝑥
𝐼 (𝑥) d𝑥 . (10)

This formulation is a continuous version of Eq. (2) for debiasing a

biased quantity, by integrating how the bias changes as we change

the variable 𝑘 dictating the bias.

3.2 Discrete formulation

Many of the problems defined by Eq. (1) involve 𝑘’s which are

discrete instead of continuous. We can obtain a discrete analog to

Eq. (10) by splitting the integral into a sum of unit-length integrals,

𝐼 = 𝐼 (𝑘) +
∞∑
𝑗=𝑘

∫ 𝑗+1

𝑗

d

d𝑥
𝐼 (𝑥) d𝑥 . (11)

By replacing the integral over the derivative with its anti-derivative,

we arrive at

𝐼 = 𝐼 (𝑘) +
∞∑
𝑗=𝑘

Δtele

𝑗 , where Δtele

𝑗 = 𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗) . (12)

This is an infinite telescoping sum of readily estimatable expecta-

tions, similar to Eq. (4). Note, that any finite sum up to 𝑘 of Δtele

𝑗
,

simplifies to 𝐼 (𝑘).

3.3 Prior work

Path tracing. Path tracing computes an unbiased estimate of an

image by accumulating the contribution from all length paths. If we

define 𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗) to represent the difference between ( 𝑗 + 1)-
length transport and 𝑗-length transport, i.e. the contribution of only

the ( 𝑗 + 1)-st bounce (see Fig. 2), we can interpret path tracing as

an instance of a telescoping sum (12) which compensates for the

bias of direct illumination by evaluating each additional path length

up to infinity. We further show that Russian roulette termination

in path tracing becomes a single-term estimation strategy (Sec. 4)

applied to Eq. (12) in the case of naive path-tracing with no next-

event estimation and no scattering on emissive surfaces. Otherwise,

it becomes an instance of a prefix-sum based estimation strategy.

Volterra transmittance. Georgiev et al. [2019] introduced an inte-

gral formulation for estimating transmittance in a classical medium

which they derived by starting from a reduced form of the differen-

tial radiative transfer equation.

If we define 𝐼 B lim𝑘→𝑏 𝐼 (𝑘) where 𝑏 is the distance to the end

of a path segment, and we plug in the definition of exponential

∑
20

𝑗=0

[
𝐼 ( 𝑗+1) − 𝐼 ( 𝑗)

]
𝐼 (1) − 𝐼 (0) 𝐼 (2) − 𝐼 (1) 𝐼 (3) − 𝐼 (2)

Fig. 2. Illustration of path tracing as an instance of Eq. (12). Each term in the

summation is the difference in contribution between ( 𝑗+1)- and 𝑗-length

paths, simplifying to a sum over the contribution of various bounces.
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transmittance 𝐼 = Tr(𝑘,𝑏) B e
−
∫ 𝑏

𝑘
𝜇 (𝑦) d𝑦

into Eq. (10), we obtain

Tr(𝑘, 𝑏) = Tr(𝑘, 𝑘) +
∫ 𝑏

𝑘

d

d𝑥
Tr(𝑥, 𝑏) d𝑥

= 1 −
∫ 𝑏

𝑘

𝜇 (𝑥) Tr(𝑥, 𝑏) d𝑥 .
(13)

This is the same as Georgiev et al.’s [2019] Volterra formulation,

except instead of starting from the radiative transfer equation, which

is not easily generalized to non-exponential transmittance functions,

we derived via Eq. (10). This representation was used by Vicini et al.

[2021] to formulate a non-exponential transmittance model which

allows for learning improved volumetric scene representations.

Outside of classical transmittance estimation, we found the appli-

cation of Eq. (10) to perform worse than Eq. (12) due to the deriva-

tives in the continuous case having unbounded variance. For this

reason, we will choose to focus on the discrete formulation instead,

however, everything we will cover generalizes nicely to the contin-

uous case as well.

Reciprocal estimation. Bangaru et al. [2020] introduced an unbi-

ased differentiable rendering algorithm which utilized the diver-

gence theorem to handle discontinuous integrands. Their formu-

lations introduced a discontinuous warp field which they make

continuous through convolution with a smoothing kernel whose

normalization factor is scene-dependent and must be estimated.

This amounts to formulating unbiased estimates for the reciprocal

of a random variable for which either Eq. (4) or Eq. (12) could be used.

Bangaru et al. [2020] utilized the estimator proposed by McLeish

[2011] which is an instance of Eq. (12).

Outside of graphics. Within the statistical literature, McLeish

[2011] and Rhee and Glynn [2012] independently introduced the

first estimation schemes for Eq. (12). Rhee and Glynn focused on

the specific problem of creating unbiased estimators for stochastic

differential equations (SDEs) by adding randomized truncation (akin

to Russian roulette) to multi-level Monte Carlo [Giles 2008; Hein-

rich 1998; Keller 2001]. McLeish [2011] introduced a more general

estimator using a prefix-sum that we’ll discuss in Sec. 4.

Rhee [2013] analyzed the optimal design decisions in creating esti-

mators for Eq. (12) and later Blanchet et al. [2015] equated this with

the optimal design decisions for the Taylor expansion approach in

Eq. (4). Rhee and Glynn [2015] later used these findings to introduce

practical estimators for SDEs while Blanchet et al. [2015] introduced

a variance reduction technique to improve the convergence rate of

a certain class of estimators. More recently, Moka et al. [2019] has

looked into the special case of formulating non-negative estimators

for the reciprocal.

4 ESTIMATION AND CONVERGENCE

Up until now, all our formulations have been defined with respect

to expected values, but to use them in practice we need to turn

them into estimators. In this section we develop a recipe (Recipe 1)

for creating debiased and consistent estimators for any problem

in the form of Eq. (2). Assuming we have already chosen a valid

representation for Δ 𝑗 by using Eq. (4) or Eq. (12), all that remains to

complete step 1 is to construct a primary and secondary estimator.

Recipe 1. A recipe for creating debiased and consistent estimators for

problems in the form of Eq. (2).

1 Construct estimators:ChooseΔ𝑗 representation respecting Eq. (1),

build primary (Sec. 4.1) and secondary (Sec. 4.2) estimators.

2 Determine rates: Determine asymptotic rates of Δ𝑗 , variance

V[ ⟨Δ𝑗 ⟩], and cost C[ ⟨Δ𝑗 ⟩], as 𝑗 → ∞.

3 Derive PMF: Insert rates into Eq. (18); check if resulting PMF 𝑝 ( 𝑗)
can be normalized. If not, skip to step 5 .

4 Verify finite work-normalized variance: Insert 𝑝 ( 𝑗) into esti-

mator ⟨𝐼 ⟩
1
and confirm the work C[ ⟨𝐼 ⟩

1
] is finite. If yes, work-

normalized variance is finite, done.

5 Build unbiased infinite-variance estimator: Fix 𝑝 ( 𝑗) to some-

thing reasonably normalizable, set the growth rate of C[ ⟨𝑘 𝑗 ⟩] suffi-

ciently high while still remaining finite to decrease the rate at which

V[ ⟨𝑘 𝑗 ⟩] approaches infinity. Evaluate secondary estimator. If noise

is acceptable, done.

6 Build consistent progressive estimator: Convert the secondary
estimator into a consistent progressive estimator, and reparameterize

Δ𝑘 such that V[ ⟨Δ𝑘 ⟩] behaves asymptotically strictly sublinearly

w.r.t. 𝑘 , done.

4.1 Primary estimators

Based off the nomenclature introduced by Georgiev et al. [2019], we

consider two approaches for building primary estimators for Eq. (2).

Single-term estimator. One approach is to randomly choose one

term 𝑗 of the bias sum (2) according to some probability mass func-

tion (PMF) 𝑝 ( 𝑗), then combine it with the biased estimate ⟨𝐼 (𝑘)⟩:

⟨𝐼 ⟩𝑘
1
= ⟨𝐼 (𝑘)⟩ + ⟨𝐵(𝑘)⟩ = ⟨𝐼 (𝑘)⟩ + ⟨Δ 𝑗 ⟩

𝑝 ( 𝑗) . (14)

Prefix-sum estimator. Alternatively, having sampled a term 𝑗 from

𝑝 ( 𝑗) we could evaluate the prefix of all terms up to 𝑗 :

⟨𝐼 ⟩𝑘
1
= ⟨𝐼 (𝑘)⟩ + ⟨𝐵(𝑘)⟩ = ⟨𝐼 (𝑘)⟩ +

𝑗∑
𝑖=𝑘

⟨Δ𝑖 ⟩
𝑃 ( 𝑗 ≥ 𝑖) , (15)

where 𝑃 ( 𝑗 ≥ 𝑖) is the cumulative mass function (CMF) giving the

probability for sampling 𝑗 ≥ 𝑖 .
Note that we could create analogous estimators for the continuous

formulation (10) by making 𝑝 ( 𝑗) a probability density function, and

using a “prefix integral” instead of a sum in Eq. (15).

4.2 Secondary estimator

To ensure that our approach converges to the sought value 𝐼 , we

form a secondary estimator,

⟨𝐼 ⟩𝑁 =
1

𝑁

𝑁∑
𝑖=1

⟨𝐼 ⟩𝑘𝑖
1
, (16)

which averages 𝑁 independent instances of the primary estimator.

Typically 𝑘𝑖 = 𝑘 will be a constant, meaning the secondary estima-

tor Eq. (16) will take the average of 𝑁 independent and identical

evaluations of the primary estimator. However, no matter how 𝑘𝑖
is assigned, Eq. (16) will always be unbiased because the primary

estimator is unbiased for any starting 𝑘 . For example, an unbiased
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progressive estimator could be constructed from Eq. (16) by setting

𝑘𝑖 = 𝑖 . This completes step 1 .

4.3 Estimation under finite variance

Steps 2 , 3 , and 4 involve determining if we can formulate a

primary estimator with finite variance, and if so, how to do so as

optimally as practically possible.

Since our primary estimators have the correct expected value

by construction, then as long as they have finite variance, the cen-

tral limit theorem tells us that the secondary estimator ⟨𝐼 ⟩𝑁 will

converge to 𝐼 at an asymptotic rate of V[⟨𝐼 ⟩𝑁 ] = O(1/𝑁 ). The con-
stant factor in this asymptotic rate, however, will depend heavily

on the construction of ⟨Δ 𝑗 ⟩ and the choice of 𝑝 ( 𝑗). When a primary

estimator has finite variance, the ideal strategy would be to choose

⟨Δ 𝑗 ⟩ and 𝑝 ( 𝑗) to minimize its work-normalized variance:

argmin

𝑝 ( 𝑗)
V[⟨𝐼 ⟩

1
] C[⟨𝐼 ⟩

1
] , (17)

where C[⟨𝐼 ⟩
1
] is its expected cost. Rhee [2013] derived expressions

for the work-normalized variance optimal 𝑝 ( 𝑗). Unfortunately, this
is primarily of theoretical interest since it requires knowledge of

not only V[ ⟨Δ𝑗 ⟩/𝑝 ( 𝑗)] and C[ ⟨Δ𝑗 ⟩/𝑝 ( 𝑗)] (which are unfortunately not
available for most problems in graphics), it also requires knowledge

of 𝐼 , the very quantity we are trying to estimate.

A more pragmatic approach would be to derive a 𝑝 ( 𝑗) which
simply minimizes variance, V[ ⟨Δ𝑗 ⟩/𝑝 ( 𝑗)], and then check whether

the resulting estimator also has finite work-normalized variance. In

Appendix A, we prove that for both continuous and discrete forms

of single-term estimation (14), the variance-optimal 𝑝 ( 𝑗) is

𝑝 ( 𝑗) ∝
√
V[⟨Δ 𝑗 ⟩] +

(
Δ 𝑗

)
2

. (18)

This matches the variance-optimal 𝑝 ( 𝑗) that Rhee [2013] derived
for the case of the discrete telescoping series (12). Later, Blanchet

et al. [2015] showed that this 𝑝 ( 𝑗) also applies to the general Taylor
series formulation (4).

Compared to Eq. (17), it is more feasible to apply Eq. (18) since

even though we may not know V[⟨Δ 𝑗 ⟩] or Δ 𝑗 exactly, we can of-

ten obtain their asymptotic rates 2 and use them to derive 3 an

asymptotically optimal 𝑝 ( 𝑗). If 𝑝 ( 𝑗) is not normalizable then our

estimator will not have finite work-normalized variance. If 𝑝 ( 𝑗) is
normalizable, we need to additionally verify 4 that C[ ⟨Δ𝑗 ⟩/𝑝 ( 𝑗)] is
finite. If not, then modifying the estimator to have finite work for

practical implementations might still result in infinite variance.

4.4 Estimation under infinite variance

Since our primary estimators have the correct expected value by

construction, the weak law of large numbers guarantees that the

secondary estimator (16) will converge in probability to 𝐼 as 𝑁

increases. Remarkably, this is the case even if the variance of the

primary estimator is infinite, as we will see for the case of debiased

photon mapping; however, the convergence rate may be slower

than O(1/𝑁 ) since the central limit theorem does not apply. We

demonstrate this in Fig. 3 for the case of estimating the integral of

a simple function with a controllable amount of variance. Even in

cases where the primary estimator has infinite variance, a secondary
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Fig. 3. The integral

∫
1

0

1

𝑥𝛼
d𝑥 (left) provides a useful test case for finite vs.

infinite variance primary estimators. The integral takes on a closed-form

value of (1−𝛼)−1 for any 𝛼 ∈ (0, 1) , but the variance of a primary estimator

using uniform sampling is finite only for 𝛼 < 0.5. For 𝛼 ≥ 0.5 the variance

is infinite, leading to slower convergence of a secondary estimator (right).

estimator will converge in expectation, but at a slower rate compared

to when variance is finite.

We can choose to formulate either an unbiased estimator 5 , or

formulate a consistent estimator 6 . The consistent estimator will

be biased, but the unbiased estimator will exhibit higher variance.

Unbiased estimation. When utilizing an unbiased primary estima-

tor in the case of infinite variance, the convergence rate is heavily

influenced by the rate at which V[ ⟨Δ𝑗 ⟩/𝑝 ( 𝑗)] approaches infinity.
We could create practical estimators by choosing the estimators’

parameters such that V[ ⟨Δ𝑗 ⟩/𝑝 ( 𝑗)] approaches infinity as slowly as

reasonably possible.

Selecting an optimal parameter configuration for such an esti-

mator may be challenging, so we instead take a more pragmatic

approach: For many applications V[⟨Δ 𝑗 ⟩] is inversely related with

C[⟨Δ 𝑗 ⟩]; for example, in photon mapping, tracing more photons

reduces its variance. By increasing the rate at which C[⟨Δ 𝑗 ⟩] grows
with 𝑗 , we also reduce the rate at which V[⟨Δ 𝑗 ⟩] increases with 𝑗 .
This way we may achieve workable convergence rates for debiased

estimators while still maintaining finite cost C[⟨𝐼 ⟩
1
].

Consistent estimation. Although debiasing is still possible in the

case of infinite variance, the noise which arises from unbiased es-

timators with slower convergence may not be acceptable in all

applications. In these cases, we can formulate an alternative consis-

tent progressive estimator, similar to progressive photon mapping,

which trades noise for bias. In Appendix E, we show that a consis-

tent progressive estimator can be derived directly from Eq. (16) by

choosing 𝑘𝑖 = 𝑖 and never evaluating 𝐵(𝑘).
This consistent progressive formulation is identical to the one

used by progressive photon mapping, so we can utilize the analysis

of prior work to construct efficient consistent estimators. First, we

take our estimator from 5 and reparameterize 𝑘𝑖 such that the

primary estimators’ variance 𝑉 (𝑘𝑖 ) = V[⟨𝐼 (𝑘𝑖 )⟩] behaves asymp-

totically strictly sublinearly w.r.t. 𝑖 . That is, 𝑉 (𝑘𝑖 ) is allowed to

increase, but not faster than 𝑖 itself, which ensures that the variance

of ⟨𝐼 ⟩c
𝑁

vanishes. The parameterization that maximizes that estima-

tor’s error convergence rate is the one that achieves O(𝑉 (𝑘𝑖 )) =
𝑘O

(
𝐵2 (𝑘𝑖 )

)
.

Once we have constructed a consistent progressive estimator, we

have completed 6 , and now we can apply our recipe to formulate

unbiased estimators for novel problems.
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Fig. 4. Debiased finite differences with respect to the roughness of a metallic

object in a scene where the main light source is partially obstructed. Our

method debiases the initial 𝐼 (𝑘) (ℎ = 0.005) to match the reference (right)

which was rendered using (ℎ = 0.0001) .

5 APPLICATIONS

In this section, we show applications of our theory to common

problems in graphics. We show several novel applications, namely

unbiased/progressive finite differences (Sec. 5.1), unbiased non-

exponential transmittance (Sec. 5.2), as well as unbiased photon

mapping and unbiased progressive photon mapping (Sec. 5.3). We

implemented all methods in the PBRT renderer [Pharr et al. 2016].

5.1 Finite differences

As an example of directly applying Recipe 1 to estimate a novel

problem, consider computing the derivative of an integral 𝐹 (𝑥) =∫
Ω 𝑓 (𝑥,𝑦) d𝑦 with respect to the parameter 𝑥 :

𝐼 B
𝜕𝐹 (𝑥)
𝜕𝑥

=
𝜕

𝜕𝑥

∫
Ω
𝑓 (𝑥,𝑦) d𝑦. (19)

For example, the function 𝑓 (𝑥,𝑦) could represent the contribution

of a light path𝑦 in a scene parameterized by 𝑥 . Note that the domain

of integration Ω may depend on 𝑥 .

Devising ways to estimate Eq. (19) efficiently and accurately is the

main goal of differentiable rendering. Even though finite differences

are not a practical approach for estimating high-dimensional deriva-

tives in an inverse rendering context, they remain a common base-

line for validating new differentiable rendering techniques, thanks

to their generality and ease of implementation. Unfortunately, since

finite differences are biased, such “ground truth”-baseline compar-

isons remain imperfect. Following all steps outlined in Recipe 1, we

will derive both unbiased and consistent alternatives to finite differ-

ences, which could serve as more accurate ground-truth techniques

for validation of future differentiable rendering methods.

We first denote the (biased) finite difference approximation of

Eq. (19) as 𝐼 (𝑘),
𝜕𝐹 (𝑥)
𝜕𝑥

≈ 𝐼 (𝑘) B 1

ℎ𝑘

(∫
Ω1

𝑓 (𝑥 + ℎ𝑘 , 𝑦1) d𝑦1 −
∫
Ω2

𝑓 (𝑥,𝑦2) d𝑦2
)
, (20)

where 𝑘 maps to a finite-difference step size ℎ𝑘 , and Ω1 ≠ Ω2 if the

integration domain depends on 𝑥 . By the definition of a derivative,

this formulation satisfies Eq. (1) as long as ℎ𝑘 → 0 as 𝑘 → ∞; we

use ℎ𝑘 ∝ 2
−𝑘

.

We can now formulate unbiased finite differences using our

telescoping-series formulation (12) as

𝐼 = 𝐼 (𝑘) +
∞∑
𝑗=𝑘

ΔFD

𝑗

𝐵 (𝑘)

, where ΔFD

𝑗 = 𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗) . (21)

We use standard Monte Carlo rendering to form ⟨𝐼 ( 𝑗)⟩ where we
choose to maximally correlate the two integral estimates, and we

use a single-term estimate of Eq. (21). This completes step 1 .

Unbiased estimation. For the cases where 𝑓 (𝑥,𝑦) is finite, contin-
uously differentiable with respect to 𝑥 , and Ω does not depend on

𝑥 , we show in Appendix D.1 how to form an estimator ⟨ΔFD

𝑗
⟩ with

finite variance and derive the asymptotic rates for Δ 𝑗 and V[⟨Δ 𝑗 ⟩],
completing step 2 . Inserting these formulations into Eq. (18), we ar-

rive at the variance optimal 𝑝 ( 𝑗) ∝ 2
−𝑗

to utilize in our single-term

primary estimator, completing step 3 . Since the cost of evaluating

finite differences is constant, we have arrived at an unbiased esti-

mator with finite work-normalized variance 4 . Figure 4 shows an

example of differentiating with respect to material roughness. Since

Ω is not dependent on 𝑥 for this case, we choose to fully correlate

paths by always performing BSDF importance sampling using the

same BSDF and evaluate all integral estimates simultaneously.

SceneScene
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Fig. 5. We show the convergence of our progressive finite differences for

evaluating the derivative of ambient occlusion on a plane by a sphere as the

sphere moves upwards, whose analytic ground truth derivative is known.
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Fig. 6. Convergence of progressive finite differences w.r.t. moving a point

light source to the right in a scene with visibility discontinuities. Each

progressive iteration uses 16 samples/pixel.

Consistent estimation. If 𝑓 (𝑥,𝑦) is not continuous with respect to

𝑥 (for example, when 𝑥 impacts visibility), then the variance of the

primary estimator, V[⟨𝐼 ⟩𝑘
1
], can become infinite. For this case, we

skip to step 5 . Through experimentation we found the unbiased

estimators for the infinite variance case to be too noisy in practice,

so instead we continue to step 6 and formulate a consistent es-

timator. For the case where Ω does not depend on 𝑥 , we show in

Appendix D.2 that finite differences are biased because they blur the

true derivatives with a box kernel. This allows us to draw an analogy

to progressive photon beams to form a progressive finite difference

estimator with the same theoretical convergence guarantees for the

ideal case. The estimators will still converge for the discontinuous

case, however their convergence rates will be slower. In Fig. 5, we

verify that this progressive estimator is consistent on an ambient

occlusion scene with a close-form ground truth; in Fig. 6, we show

a more complex example in a scene with obvious discontinuities,

showing how progressive iterations of our estimator reduce the blur-

ring of finite differences in much the same way as in progressive

photon beams.

5.2 Non-exponential transmittance

At its core, computing transmittance in volumetric rendering in-

volves estimating a function of expectations (3) 𝐼 B 𝑔(𝐹 ) where
𝐹 is the optical depth integral along a ray. Estimating 𝐹 numeri-

cally in heterogeneous media leads to bias when passed through

the transmittance function 𝑔. In classical radiative transport, the

transmittance is simply the exponential, 𝑔(𝐹 ) B e
−𝐹

, but recent

non-exponential formulations [Bitterli et al. 2018; Jarabo et al. 2018]

allow for using any monotonically decreasing function 𝑔 that starts

at 𝑔(0) = 1.
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2
−24

2
−15

2
−6

Variance

1 3 5 7 9 11 13 15

2
−11

2
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2
−1

Work normalized variance

uncorrelated

correlated

Fig. 7. Correlating samples when estimating ⟨ΔRM

𝑗
⟩ can have a dramatic

impact on convergence. Here 𝐼 B e

∫
−𝑓 (𝑥 ) d𝑥

where 𝑓 (𝑥) is some random

noise and the integral is estimated with a 2
𝑗
-sample Monte Carlo estimator.

The graph in red shows the variance (left) and work-normalized variance

(right) with uncorrelated evaluation ⟨Δ𝑗 ⟩ = ⟨𝐼 ( 𝑗 + 1) ⟩ − ⟨𝐼 ( 𝑗) ⟩, while in
blue we show the improvement when evaluating ⟨Δ𝑗 ⟩ = ⟨𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗) ⟩
using Blanchet and Glynn’s [2015] technique for correlating samples.

Unfortunately, estimation of such non-exponential transmittance

still lags behind traditional transport because most available tech-

niques [Georgiev et al. 2019; Kettunen et al. 2021; Kutz et al. 2017;

Novák et al. 2014] rely on the exponential assumption. This leaves

only raymarching (biased) or regular tracking (slow) as possible

techniques for general forms of transmittance 𝑔. Luckily, since trans-

mittance is a function of expectations, it is readily debiasable using

our framework with both Eqs. (4) and (12).

Telescoping series for general transmittance. The telescoping se-

ries formation (12) allows us—for the first time—to form unbiased

estimators for general transmittance functions as

𝐼 B 𝑔(𝐹 ) = 𝐼 (𝑘)

biased transmittance estimate

+

bias 𝐵 (𝑘)
∞∑
𝑗=𝑘

ΔRM

𝑗 , with ΔRM

𝑗 = 𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗) . (22)

We use 𝐼 (𝑘) to denote the biased evaluation of transmittance𝑔where

we use ray marching with a monotonically decreasing sequence of

step sizes to estimate 𝐹 (though any numerical estimation technique

for 𝐹 is admissible as long as it ensures consistency (1) in the limit

as 𝑘 → ∞).

We form a single-term estimator ⟨𝐼 ⟩𝑘
1
of Eq. (22) using a geometric

PMF 𝑝 ( 𝑗) = 𝑟 (1 − 𝑟 ) 𝑗 with 𝑟 = 0.65, as recommended by Blanchet

and Glynn [2015] for applying Eq. (12) to smooth functions of ex-

pectations. We set the ray marching step size to 𝑠 𝑗 ∝ 2
−𝑗
. Doubling

the number of ray marching steps this way allows for dramatic

sample reuse and variance reduction when estimating ⟨ΔRM

𝑗
⟩ since

we can evaluate both ⟨𝐼 ( 𝑗 + 1)⟩ and ⟨𝐼 ( 𝑗)⟩ simultaneously with a
shared set of ray marching samples. In fact, we can reduce variance

further [Blanchet and Glynn 2015] by splitting the 𝑁 samples from

⟨𝐼 ( 𝑗 + 1)⟩ into two groups and averaging two separate estimators

for ⟨𝐼 ( 𝑗)⟩ with 𝑁 /2 samples each. We show in Fig. 7 that these mea-

sures have a profound impact on not just the variance V[⟨ΔRM

𝑗
⟩],

but also its asymptotic convergence rate.

In Fig. 8 we demonstrate this estimator on the WDAS cloud scene

using the two-parameter Davis andMineev-Weinstein transmittance
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Fig. 8. Illustration of our telescoping-based debiased ray-marching (22).

The split image shows classical transmittance as well as non-exponential

transmittance with three different choices for𝐶 and 𝛽 . The plot shows the

convergence of four select pixels towards a regular-tracked ground truth.

model,

𝑔(𝐹 ) B
(
1 + 𝐹 𝛽𝐶1+𝛽

)− 𝐹 1−𝛽
𝐶1+𝛽

, (23)

for a variety of settings of 𝛽 and 𝐶 which together control the

shape of the transmittance curve. We compare our results to regular

tracking, confirming that our estimator is unbiased, and that the

variance V[⟨𝐼 ⟩𝑁 ] falls off at the expected O(1/𝑁 ) convergence rate.

Taylor series for pink-noise transmittance. We can also apply the

Taylor series formulation to Eq. (23). For arbitrary values of 𝛽 , we

found that the complexity of the derivative terms in the Taylor

expansion grows exponentially for increasing values of 𝑗 . However,

for the special case of “pink-noise” (𝛽 = 1), Eq. (23) simplifies to

𝑔(𝐹 ) B
(
1 + 𝐹𝐶2

)− 1

𝐶2

, (24)

which admits a compact Taylor series formulation (4):

𝐼 B 𝑔(𝐹 ) =
𝑘−1∑
𝑗=0

Δ
pink

𝑗

𝐼 (𝑘)

+
∞∑
𝑗=𝑘

Δ
pink

𝑗

𝐵 (𝑘)

, where

Δ
pink

𝑗
=

(𝛼 − 𝐹 ) 𝑗
𝑗 !

(
1 + 𝛼𝐶2

) −1
𝐶2

−𝑗 𝑗−1∏
𝑖=1

(
1 + 𝑖𝐶2

)
.

(25)

We create a prefix-sum primary estimator of Eq. (25) by defining

the PMF 𝑝 ( 𝑗) indirectly via Russian roulette probabilities:

𝑃acc ( 𝑗) =
1 + ( 𝑗 − 1)𝐶2

𝑗
, 𝑝 ( 𝑗) = (1 − 𝑃acc ( 𝑗))

𝑗−1∏
𝑖=0

𝑃acc (𝑖) . (26)

Since this is independent of both the expansion point 𝛼 and any

optical depth evaluation, ⟨𝐹 ⟩, we can take advantage of all the same

variance reduction techniques that Kettunen et al. [2021] introduced

for exponential transmittance. We use uniformly jittered regular

samples with a fixed step-size (0.2) to estimate ⟨𝐹 ⟩. We set 𝑘 = 3,

and choose to evaluate the bias only a portion (𝑃 = 0.1) of the time

which reduces the cost while slightly increasing the variance of the

estimator.

In Fig. 9 we compare both our Taylor series (25) and telescoping

series (22) estimators against prior techniques for unbiased estima-

tion of both pink-noise- and exponential-transmittance functions.

Bitterli et al. [2018] showed that ratio tracking (or any existing ex-

ponential transmittance estimator) can be reused for pink noise by

first sampling a multiplicative factor 𝛾 from a gamma distribution,

and then estimating exponential transmittance in a medium with

its density scaled by 𝛾 . We also apply this trick to Kettunen et al.

[2021]’s more recent unbiased ray marching technique, to allow it to

handle both exponential and pink-noise transmittance. As shown in

Fig. 9, our estimators consistently outperform these prior methods,

sometimes reducing RMSE by a factor of 10× at equal cost.

In our full implementation [Misso et al. 2022] we additionally

provide a novel estimator akin to Georgiev et al.’s [2019] pseries-

cumulative estimator but for pink-noise and include more compar-

isons in canonical pink-noise and exponential media for all our

estimators.

5.3 Photon mapping

Photon mapping is the most practical algorithm for rendering com-

plex caustic effects. It emits photons from light sources which are

then used to compute the radiance at a point in the scene via den-

sity estimation. However, density estimation yields a result with

bias dependent on the radius 𝑟 of the density kernel used; the bias

vanishes as the radius approaches zero. Note that while an unbiased

formulation of photon mapping exists [Qin et al. 2015], it does not

handle purely specular caustics.

We denote the (biased) expectation of the photon mapping radi-

ance estimate as 𝐼 (𝑘), where 𝑘 maps to a monotonically decreasing

sequence of radii 𝑟𝑘 used for density estimation. We can create a

telescoping-series formulation (12) for the problem as

𝐼 = 𝐼 (𝑘) +
∞∑
𝑗=𝑘

ΔPM

𝑗

𝐵 (𝑘)

, where ΔPM

𝑗 = 𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗), (27)

which fully debiases photon mapping, even in the presence of caus-

tics. In essence, Eq. (27) represents the bias as consecutive differences

of kernels with monotonically decreasing radii (Fig. 10).

By utilizing the known convergence rates of progressive photon

mapping, we show in Appendix C that it is not possible for both
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Fig. 9. Comparing a variety of transmittance estimators for a non-exponential medium with the Davis and Mineev-Weinstein transmittance model Eq. (23) for

two different values of𝐶 for an equal number of extinction calls (1.2e8 for𝐶 = 0.3, 0.8, and 1.0e8 for exponential). The three estimators on the right can be

used as estimators for exponential transmittance, so we also include inset comparisons for an exponential medium at the top of their respective insets. RMSE

values are measured across the entire image.

Photon mappingPhoton mapping Negative biasNegative bias

EV+1EV+1

EV+1EV+1

Positive biasPositive biasUnbiased photon mapping (ours)Unbiased photon mapping (ours)

−

+

=

Fig. 10. Decomposition of our unbiased photon mapping into the sum of

a biased estimate and a bias term. We separate the bias into positive and

negative parts for ease of visualization.

3 and 4 to hold, i.e., we cannot debias Eq. (27) with finite work-

normalized variance. However, unbiased secondary estimators still

converge by the law of large numbers.

Unbiased photon mapping. We formulate unbiased photon map-

ping via a single-term primary estimator (14), and a secondary

estimator (16) with 𝑘𝑖 = 𝑘 for 5 . We use a cone kernel and fully

correlate all kernel evaluations, in essence by estimating ⟨ΔPM

𝑗
⟩ B

⟨𝐼 ( 𝑗 + 1) − 𝐼 ( 𝑗)⟩ instead of ⟨𝐼 ( 𝑗 + 1)⟩−⟨𝐼 ( 𝑗)⟩.We use 𝑝 ( 𝑗) ∝ O( 𝑗𝛼−2),
and set the number of global photons to O( 𝑗1−𝑐𝛼 ) where 𝑐 = 1.001

and 𝛼 = 2/3. Compared to prior progressive photon mapping meth-

ods, our debiased photon mapping trades bias (i.e., blurring) for

noise (Fig. 11).

Unbiased progressive photon mapping. We can also debias progres-

sive photon mapping by making a small change in the secondary

estimator (16): setting 𝑘𝑖 = 𝑖 instead of having it constant to com-

plete 5 . This is equivalent to progressive photon mapping, with

an additional estimation of the bias of each progressive iteration. If

we instead continued from 5 and performed 6 , we would end up

with prior work’s consistent progressive photon mapping.

In Fig. 12, we compare convergence rates of our debiased methods

and prior progressive photon mapping in terms of emitted photons.

6 CONCLUSION

We have introduced a general framework for formulating unbiased

and consistent estimators from biased ones as well as provided a

general recipe for applying our framework to novel problems. We

have shown how specializations of these techniques have already

appeared in graphics for reciprocal and classical transmittance esti-

mation, and how to apply them to a broader class of problems. We

have introduced unbiased progressive estimation and have shown

how prior biased but consistent formulations, i.e. progressive photon

mapping, can be obtained from our unbiased formulation as a means
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Progressive photon mapping Unbiased photon mapping (ours)

Fig. 11. Compared to progressive photon mapping (with 𝛼 = 2/3) at equal
number (3.3e10) of emitted photons, our unbiased photon mapping trades

blurring (i.e., bias) for noise.

of trading noise for bias when unbiased estimation leads to infinite

variance. Using our framework, we have introduced a debiased ray-

marching approach which is the first unbiased estimator to support

general non-exponential transmittance.We have introduced the first

unbiased formulation for photon mapping and progressive photon

mapping which supports caustics. We have also shown how to make

finite differences unbiased for smooth functions, and formulated a

consistent estimator in the presence of discontinuities.

Discussion and future work

The primary estimators we have used rely on either a Taylor series

(4) or telescoping series (12) expansion, so a reasonable question

to ask is which one should be used when they both apply? We

have found this to be extremely problem-dependent. For example,

some of the variance reduction techniques introduced by Kettunen

et al. [2021] for transmittance estimation cannot be utilized for

reciprocal estimation due to its singularity, causing the optimal

design decisions for reciprocal estimation to differ from problems

akin to transmittance. While an extensive comparative analysis

could prove invaluable in guiding such design decisions in future

work, there are some clear trade-offs between the two algorithms

that are already apparent from our investigations.

The telescoping series performs best when implemented as a

global algorithm which combines evaluations of 𝐼 (𝑘) as a post pro-
cess. This requires re-structuring rendering algorithms to integrate

multiple values separately and correlate entire paths for maximum

performance. The Taylor series is applicable only to smooth func-

tions of expectations, making it less general, but more self-contained

and easier to maintain, compared to the telescoping series. By uti-

lizing relatively large initial 𝑘’s and each formulations’ respective

variance reduction techniques, both formulations can reach compa-

rably low work-normalized-variances.

In addition to looking into optimal estimation configurations for

specific applications, there are ample opportunities for exploring

2
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PPM

1.2e+0

6.1e-1

3.0e-1

Unbiased PM

Unbiased PPM

Fig. 12. We show the convergence of the mean absolute difference of our un-

biased photon mapping and unbiased progressive photon mapping against

progressive photon mapping for a canonical scene containing only a plane

and a point light source while measured from a single location for equal

cost. The convergence rates between progressive photon mapping and our

unbiased photon mapping are similar.

Taylor-cumul. (ours) Bernoulli Trials Telescoping (ours)

Fig. 13. Preliminary equal-time (10 minutes) results showing a potential ap-

plication in formulating unbiased estimation for specular manifold sampling

[Zeltner et al. 2020] (i.e. reciprocal estimation). Our Taylor-series estima-

tor (left), based on the pseries-cumulative estimator estimator of Georgiev

et al. [2019], performs similarly to Bernoulli trials. Making our telescoping-

series estimator (right) competitive requires further investigation.

the full potential of our framework. Most notably, the current state

of the art for estimating the reciprocal of a probability is a Bernoulli

trial estimator (Fig. 13). While we found some of our estimators can

match the performance of Bernoulli trials, we believe further work

could use our framework to derive even more efficient estimators.

Many algorithms in graphics use Russian roulette to probabilisti-

cally account for an infinite series in finite time. This is just an in-

stance of Eq. (12)’s telescoping debiasing. Russian roulette, however,

does not typically choose a selection PMF a priori. The effective PMF
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is rather a consequence of each Russian roulette decision, which can

notably adapt to local information on the fly. So far, our applications

of Eq. (12) have only explored specifying a single global PMF. In the

case of path tracing truncation, this would be like specifying the

probability of sampling specific length paths without knowing the

reflectivity of the surfaces encountered along the paths. Exploring

and constructing estimators which exploit local information in Rus-

sian roulette and weight windows [Vorba and Křivánek 2016] could

be a promising avenue for future work.

The Volterra formulation for transmittance has been shown to

encompass all of the prior tracking-based transmittance estima-

tors, which have analogous free-flight distance sampling routines

[Georgiev et al. 2019]. Originally, this formulation was derived in

a manner which was tied to the definition of classical exponen-

tial transmittance. Reformulating this directly as an initial value

problem (9,13) opens the possibility to more easily derive unbiased

free-flight distance sampling routines for non-exponential media.
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A VARIANCE-OPTIMAL SINGLE-TERM ESTIMATION

Here we derive the variance-optimal PDF/PMF 𝑝 (𝑥) for the integral
estimator in Eq. (14) in the continuous and discrete case.

Continuous case. Since the estimator is unbiased, minimizing its

variance is equivalent to minimizing its second moment,

E

[(
⟨Δ 𝑗 ⟩
𝑝 ( 𝑗)

)
2

]
=

∫ ∞

𝑘

E

[
⟨Δ𝑥 ⟩2

]
𝑝 (𝑥)2

𝑝 (𝑥) d𝑥 =

∫ ∞

𝑘

E

[
⟨Δ𝑥 ⟩2

]
𝑝 (𝑥) d𝑥, (28)

under the condition that 𝑝 (𝑥) is normalized, i.e.,

∫ ∞
𝑘
𝑝 (𝑥) d𝑥 = 1.

This problem can be solved using the Euler-Lagrange equation from

the calculus of variations as follows. We first define

L(𝑥, 𝜆, 𝑝) =
E

[
⟨Δ𝑥 ⟩2

]
𝑝 (𝑥) + 𝜆𝑝 (𝑥), (29)

where 𝜆 is the (yet unknown) Lagrange multiplier. We then write

the Euler-Lagrange equation for 𝑞, which we solve for 𝑝:

dL
d𝑝

− d

d𝑥

(
dL
d𝑝 ′

)
=0

= 0 ⇔ −
E

[
⟨Δ𝑥 ⟩2

]
𝑝2 (𝑥)

+ 𝜆 = 0 (30)

⇔ 𝑝 (𝑥) =

√
E

[
⟨Δ𝑥 ⟩2

]
𝜆

. (31)

Since 𝑝 (𝑥) must be normalized, 𝜆 is its normalization constant.

Finally, since V[⟨Δ𝑥 ⟩] = E

[
⟨Δ𝑥 ⟩2

]
− (Δ𝑥 )2, we minimize vari-

ance when

𝑝 (𝑥) ∝
√
V[⟨Δ𝑥 ⟩] + (Δ𝑥 )2 . (32)

Discrete case. In this case the second moment takes the form

E

[(
⟨Δ 𝑗 ⟩
𝑝 ( 𝑗)

)
2

]
=

∞∑
𝑗=𝑘

E

[
⟨Δ 𝑗 ⟩2

]
𝑝 ( 𝑗) . (33)

To find the minimum of this sum w.r.t. 𝑝 ( 𝑗), we use the method of

Lagrange multipliers. We define a new minimization problem

L
(
𝜆, 𝑝

)
=

∞∑
𝑗=𝑘

E

[
⟨Δ 𝑗 ⟩2

]
𝑝 ( 𝑗) − 𝜆 ©«1 −

∞∑
𝑗=𝑘

𝑝 ( 𝑗)ª®¬ (34)

and find its local extrema by solving for roots of its gradient. The

sum in the parentheses encodes the PMF normalization condition.

Solving for 𝑝 ( 𝑗) yields

𝜕L
𝜕𝑝 ( 𝑗) = 0 ⇔ −

E

[
⟨Δ 𝑗 ⟩2

]
𝑝 ( 𝑗)2

+ 𝜆 = 0 (35)

⇔ 𝑝 ( 𝑗) =

√
E

[
⟨Δ 𝑗 ⟩2

]
𝜆

⇔ 𝑝 ( 𝑗) ∝
√
V[⟨Δ 𝑗 ⟩] +

(
Δ 𝑗

)
2

, (36)

where in Eq. (36) 𝜆 is a normalization constant, arriving at an optimal

PMF analogous to the one for the continuous case above.

B CONDITIONS FOR CONSISTENCY

For a secondary estimator to be consistent, we need its MSE to

converge:

lim

𝑁→∞
MSE[⟨𝐼 ⟩𝑁 ] = lim

𝑁→∞

(
V[⟨𝐼 ⟩𝑁 ] + B[⟨𝐼 ⟩𝑁 ]2

)
= 0. (37)

For this we need both the bias and the variance to converge:

lim

𝑁→∞
V[⟨𝐼 ⟩𝑁 ] = lim

𝑁→∞
1

𝑁 2

𝑁∑
𝑖=1

V[⟨𝐼 (𝑘𝑖 )⟩]
𝑉 (𝑘𝑖 )

=
O(𝑉 (𝑘𝑁 ))

𝑁
= 0, (38)

lim

𝑁→∞
B[⟨𝐼 ⟩𝑁 ] = lim

𝑁→∞
1

𝑁

𝑁∑
𝑖=1

B[⟨𝐼 (𝑘𝑖 )⟩]
𝐵 (𝑘𝑁 )

= O(𝐵(𝑘𝑁 )) = 0, (39)

This result tells us that consistency is achieved when the primary

estimator’s bias 𝐵(𝑘) vanishes, at any rate, while its variance is even
allowed to increase, though sublinearly. Among all parameteriza-

tions for 𝑘𝑁 that meet these two conditions, the one that maximizes

the MSE convergence rate is the one that achieves O(V[⟨𝐼 ⟩𝑁 ]) =
O
(
B[⟨𝐼 ⟩𝑁 ]2

)
, i.e. O(𝑉 (𝑘𝑁 )) = 𝑁O

(
𝐵2 (𝑘𝑁 )

)
.

C DEBIASING PHOTON MAPPING

In the following we describe the steps to debias photon mapping.

We begin with the biased but consistent base estimator ⟨𝐼 (𝑘)⟩ which
traces𝑀𝑘 photons and performs density estimation with a kernel of

radius 𝑟𝑘 . For suitably chosen𝑀𝑘 and 𝑟𝑘 , this estimator converges

to 𝐼 as 𝑘 → ∞ [Jensen 2001].

We form a single-term telescoping-series estimator (14) assuming

perfectly correlated evaluation of ⟨Δ 𝑗 ⟩ = ⟨𝐼 ( 𝑗 + 1)⟩−⟨𝐼 ( 𝑗)⟩, i.e. both
evaluations of ⟨𝐼 ( 𝑗)⟩ and ⟨𝐼 ( 𝑗 + 1)⟩ share the same set of photons. If

both estimators trace different numbers of photons (i.e.𝑀𝑗+1 ≠ 𝑀𝑗 ),

we ignore unshared photons for the rest of this analysis, giving a

lower bound on the variance and bias. Under this assumption, evalu-

ation of the two estimators differs only in the kernel radius used (𝑟 𝑗
and 𝑟 𝑗+1), and we can express the difference of the two estimators

as a single photon mapping estimator that uses the difference of the

two kernels for density estimation.

This allows us to use the analysis of Knaus and Zwicker [2011]

as a basis to derive the expectation and variance of ⟨Δ 𝑗 ⟩ which
are needed for deriving a variance-optimal PMF for sampling the

telescoping series. Repeating the derivation of Knaus and Zwicker

using the modified difference kernel yields the following asymptotic

relationships:

V[⟨Δ 𝑗 ⟩] ∝
1

𝑀𝑗

∫ (
𝑘 (𝑟 𝑗+1, 𝑥) − 𝑘 (𝑟 𝑗 , 𝑥)

)
2

d𝑥, (40)

Δ 𝑗 ∝ 𝑟2𝑗 , (41)

where 𝑘 (𝑟, 𝑥) evaluates the density-estimation kernel of radius 𝑟 at

location 𝑥 .

The asymptotics above depend on the relationship of the number

of photons𝑀𝑘 and the kernel radius 𝑟𝑘 with respect to 𝑘 , as well as

the specific choice of kernel. Knaus and Zwicker [2011] andGeorgiev

et al. [2012] show that 𝑟 𝑗 =
√
𝑗𝛼−1 with 0 < 𝛼 < 1 yields consistent

progressive estimation. This leads to the following asymptotics for

the expectation and the variance:

Δ 𝑗 = O( 𝑗𝛼−2) (42)

V[⟨Δ 𝑗 ⟩] = 𝑀−1
𝑗 O( 𝑗−𝛼 ), (constant kernel) (43)

V[⟨Δ 𝑗 ⟩] = 𝑀−1
𝑗 O( 𝑗−𝛼−1) . (cone kernel) (44)
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Given the asymptotics, we can now test whether debiasing yields

finite work-normalized variance. First, the optimal PMF

𝑝 ( 𝑗) ∝
√
V[⟨Δ 𝑗 ⟩] +

(
Δ 𝑗

)
2

=

√
𝑀−1

𝑗
O( 𝑗−𝛼−1) + O( 𝑗2𝛼−4) (45)

must be normalizable (using the best-case, cone-kernel variance).

Second, the expected work

C[⟨𝐼 ⟩
1
] ∝

∞∑
𝑗=1

𝑀𝑗 · 𝑝 ( 𝑗) ∝
∞∑
𝑗=1

√
𝑀𝑗O( 𝑗−𝛼−1) +𝑀2

𝑗
O( 𝑗2𝛼−4) (46)

must be finite (here, using the number of emitted photons as an

estimate of the cost). Sadly, there is no choice of𝑀𝑗 and 𝛼 that can

satisfy both these conditions. The estimator is still debiasable, but

with infinite work-normalized variance, i.e., with reduced secondary-

estimator convergence rate.

D IDEAL-CASE FINITE-DIFFERENCE ANALYSIS

D.1 Expectation & variance of finite-difference deltas

To form an estimator of ΔFD

𝑗
(21), we first need to estimate the

integrals in Eq. (20). In the ideal case, we can perfectly correlate

evaluations of 𝑓 (𝑥,𝑦) through the use of the same samples for 𝑦,

so for brevity we will simplify 𝑓 (𝑥,𝑦) to 𝑓 (𝑥) in the following

derivations. This results in

⟨ΔFD

𝑗 ⟩ = ⟨𝑓 (𝑥 + ℎ 𝑗+1)⟩ − ⟨𝑓 (𝑥)⟩
ℎ 𝑗+1

− ⟨𝑓 (𝑥 + ℎ 𝑗 )⟩ − ⟨𝑓 (𝑥)⟩
ℎ 𝑗

. (47)

If 𝑓 (𝑥) is continuously differentiable with respect to 𝑥 , we have

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + ℎ 𝜕

𝜕𝑥
𝑓 (𝑥) + ℎ2 𝜕

2

𝜕𝑥2
𝑓 (𝑥) + O(ℎ3) . (48)

Inserting Eq. (48) into (47) and canceling terms gives

⟨ΔFD

𝑗 ⟩ = (ℎ 𝑗+1 − ℎ 𝑗 )
〈
𝜕2

𝜕𝑥2
𝑓 (𝑥)

〉
+ O(ℎ2𝑗+1) − O(ℎ2𝑗 ) , (49)

and since ℎ 𝑗+1 < ℎ 𝑗 by construction, we have

ΔFD

𝑗 ∝ (ℎ 𝑗+1 − ℎ 𝑗 ), and V[⟨ΔFD

𝑗 ⟩] ∝
(
ℎ 𝑗+1 − ℎ 𝑗

)
2

. (50)

D.2 Bias & variance rates of consistent finite differences

For the ideal case where all evaluations of 𝑓 (𝑥,𝑦) can be evaluated

using the same samples for 𝑦 Eq. (47), estimating 𝐼 (𝑘) in Eq. (20) is

equivalent to estimating the true derivative convolved with a box

kernel (for brevity, we use 𝑓 (𝑥) since we evaluate each 𝑓 (𝑥,𝑦) using
a shared sample 𝑦):

⟨𝐼 (𝑘)⟩ = ⟨𝑓 (𝑥 + ℎ𝑘 ) − 𝑓 (𝑥)⟩
ℎ𝑘

=
1

ℎ𝑘

∫ 𝑥+ℎ𝑘

𝑥

〈
𝜕
𝜕𝑥 𝑓 (𝑡)

〉
d𝑡 (51)

=

∫ ∞

−∞
𝐾 (𝑥 − 𝑡)

〈
𝜕
𝜕𝑥 𝑓 (𝑡)

〉
d𝑡, where (52)

𝐾 (𝜏) =
{

1

ℎ𝑘
0 < 𝜏 < ℎ𝑘

0 otherwise

is a normalized box kernel. (53)

If we replace

〈
𝜕
𝜕𝑥 𝑓 (𝑡)

〉
with its expectation, this shows that the

bias in finite difference estimators results from a 1D blur (along the

direction of differentiation), analogously to howphoton beams [Jarosz

et al. 2011a] return a 1D blurred version of volumetric radiance.

Given this equivalence, a direct Monte Carlo estimator of Eq. (20)

will have the same bias and variance convergence rates as derived by

Jarosz et al. [2011b] for photon beams when the parameter of differ-

entiation does not modify the path space, with the finite difference

step size ℎ𝑘 standing in for the blur kernel width:

B[⟨𝐼 (𝑘)⟩] = O(ℎ𝑘 ) and V[⟨𝐼 (𝑘)⟩] = O
(
ℎ−1
𝑘

)
. (54)

This implies that, just like in progressive photon mapping, we can

form a progressive finite difference estimator by averaging multiple

finite difference renderings while reducing the step sizeℎ𝑘 according

to ℎ𝑘 = ℎ0
√
𝑘𝑎−1. This is guaranteed to be a consistent estimator

for parameter 𝑎 ∈ (0, 1), and provides its optimal MSE convergence

rate with 𝑎 = 2/3.
More generally, by the law of large numbers progressive estima-

tors will still converge even if all 𝑦 samples cannot be correlated,

however, the convergence rate will be slower then our derived ideal

rates Eq. (54).

E DERIVING CONSISTENT PROGRESSIVE ESTIMATION

FROM UNBIASED ESTIMATION

We first construct an unbiased progressive secondary estimator

Eq. (16) with 𝑘𝑖 = 𝑖 , and replace the primary estimator with its

expectation:

𝐼 =
1

𝑁

𝑁∑
𝑘=0

©«𝐼 (𝑘) +
∞∑
𝑗=𝑘

Δ 𝑗
ª®¬ (55)

=
1

𝑁

𝑁∑
𝑘=0

𝐼 (𝑘) +
𝑁∑
𝑘=0

∞∑
𝑗=𝑘

Δ 𝑗

𝑁
. (56)

From here it is easy to see that since allΔ 𝑗 ’s are finite by construction

(Δ∞ = 0), the right (i.e. bias) term in Eq. (56) converges to zero:

lim

𝑁→∞

𝑁∑
𝑘=0

∞∑
𝑗=𝑘

Δ 𝑗

𝑁
= lim

𝑁→∞
1

𝑁

𝑁∑
𝑘=0

∞∑
𝑗=𝑘

Δ 𝑗 = lim

𝑁→∞
1

𝑁

𝑁∑
𝑘=0

𝑎𝑘 = 0. (57)

Choosing to never evaluate the bias yields a biased but consistent

progressive formulation:

𝐼 = lim

𝑁→∞
1

𝑁

𝑁∑
𝑘=0

𝐼 (𝑘). (58)
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