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Fig. 1. Two scenes that are challenging to render efficiently without user guidance: The caustics and strong indirect illumination in the Fish scene (left) resolve
much faster with a bidirectional method such as VCM. But the simpler Target Practice scene (right) renders 2× slower with VCM than with forward path
tracing. Our method renders both scenes efficiently by automatically setting the number of light subpaths to trace, the number of bidirectional connections to
make, and in which pixels to perform photon density estimation (the ‘merge mask’ specifies a probability for performing a photon lookup in a pixel).

Multiple importance sampling (MIS) is an indispensable tool in light-transport

simulation. It enables robust Monte Carlo integration by combining samples

from several techniques. However, it is well understood that such a combi-

nation is not always more efficient than using a single sampling technique.

Thus a major criticism of complex combined estimators, such as bidirectional

path tracing, is that they can be significantly less efficient on common scenes

than simpler algorithms like forward path tracing. We propose a general

method to improve MIS efficiency: By cheaply estimating the efficiencies of

various technique and sample-count combinations, we can pick the best one.

The key ingredient is a numerically robust and efficient scheme that uses

the samples of one MIS combination to compute the efficiency of multiple

other combinations. For example, we can run forward path tracing and use

its samples to decide which subset of VCM to enable, and at what sampling

rates. The sample count for each technique can be controlled per-pixel or

globally. Applied to VCM, our approach enables robust rendering of complex

scenes with caustics, without compromising efficiency on simpler scenes.
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1 INTRODUCTION
Monte Carlo integration has firmly established itself as the stan-

dard approach for computing global illumination, thanks to its abil-

ity to achieve high levels of accuracy and realism. Many Monte

Carlo rendering algorithms have been developed over the past three

decades, with varying degree of sophistication and capability to

reproduce complex illumination effects. The practical utility of such

an algorithm depends crucially on two factors: (1) its robustness

in handling diverse scenes and (2) its efficiency on typical scenes.

The best known way to achieve robustness is to combine diverse

sampling techniques through multiple importance sampling (MIS)

[Veach and Guibas 1995b]. For example, the vertex connection and

merging (VCM) algorithm comprises a large number of techniques,

each specialized to efficiently capture a different illumination effect

[Georgiev et al. 2012; Hachisuka et al. 2012]. While robust, such

extensive combinations can incur significant computational over-

head on typical scenes that contain only a subset of all possible

effects. Achieving efficiency involves per-scene parameter tuning,

e.g., the number of light subpaths or shadow-ray connections, or

completely disabling redundant techniques. This in turn requires

good understanding of the scene’s lighting and the utility of every

available technique. To avoid burdening users, modern renderers
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often sacrifice robustness by defaulting to simple forward path trac-

ing which can efficiently handle many common configurations but

not complex indirect illumination, occlusion, and caustics [Křivánek

et al. 2018].

Automatic parameter tuning has the potential to greatly improve

the practical utility of comprehensive MIS strategies. To that end,

we propose a simple and general method for optimizing sample

counts in MIS. By taking samples from only one technique, we

can cheaply estimate the efficiency of all available techniques and

predict the best sample allocation for each. For example, from a sin-

gle path-tracing invocation with one sample per pixel, our method

can reliably determine if and how the given scene would benefit

from bidirectional sampling. Based on that information, we can

either enable such techniques or, if these are deemed inefficient,

continue rendering using basic techniques, without ever incurring

the overhead of the more sophisticated ones. Figure 1 demonstrates

the effectiveness of our approach on the VCM algorithm, which

employs one of the most complex MIS combinations. Our method

can enable techniques on-demand, to achieve high efficiency with-

out any user guidance. The net result is consistent and potentially

substantial speed-up over both unidirectional path tracing and VCM

with fixed parameters.

We focus on complex bidirectional algorithms like VCM. Our

key contribution is an efficient estimation scheme that supports the

high-dimensional path densities encountered in such algorithms

(Section 3.3). The underlying ideas of ourmethod are general and can

be extended to other MIS applications. The supplemental document

shows results for a simple direct illumination application. Source

code is available on GitHub [Grittmann et al. 2022].

2 PREVIOUS WORK
There have been a few attempts at improving the sample allocation

for MIS combinations. These have focused on comparatively simple

low-dimensional applications, usually local sampling decisions for

direct illumination or path guiding applications. Instead, our method

is specifically designed to support complex high-dimensional appli-

cations like bidirectional algorithms.

Heuristics. Pajot et al. [2010] were the first to attack the problem

of optimal sample allocation for estimating reflected radiance. They

designed per-technique heuristics that can measure how “relevant”

a technique is for a given configuration. For example, their heuristics

for path guiding [Jensen 1995] assess whether the learned incident

radiance distribution or the BSDF is more important at each point

in the scene. However, this formulation cannot easily be generalized

to other applications.

Variance estimates. As an alternative to a heuristic approach, the

sample counts can be set based on variance estimates of individual

techniques [Havran and Sbert 2014; Sbert et al. 2018b,a, 2016; Sbert

and Havran 2017], but it has been shown that direct optimization of

the combined MIS variance yields better results [Sbert et al. 2019].

Convex optimization. Three different approaches have been pro-

posed to directly minimize the variance of a one-sample MIS esti-

mator on-the-fly during rendering: Taylor approximation [Lu et al.

2013], Newton-Raphson root-finding [Sbert et al. 2019; Murray et al.

2020], and gradient descent [Müller 2019; Rath et al. 2020]. The

optimized technique-selection probabilities can be also utilized in a

multi-sample MIS combination whose variance is upper-bounded

by the corresponding one-sample combination [Sbert et al. 2019].

In Appendix A we show how these approaches can be extended

to take (linear) sampling cost into account and how the required

derivatives can be computed for high-dimensional integrals in a nu-

merically stable and efficient manner. However, convex optimization

only works if the classic balance heuristic is used as the weighting

function, which has been shown to be problematic for bidirectional

algorithms [Grittmann et al. 2019, 2021].

Sample densities and weights. Not only the sample counts can be

optimized in an MIS combination. Prior work has shown how to

enhance the technique-weighting functions to better handle failure

cases [Grittmann et al. 2019, 2021] and has even derived the optimal

weights [Kondapaneni et al. 2019]. MIS has a close relationship to

control variates [Owen and Zhou 2000; Kondapaneni et al. 2019],

and it is possible to jointly optimize the control-variate coefficients

and the sample counts [He and Owen 2014]. Sbert and Elvira [2022]

provide a theoretical discussion of optimized weights and sample

counts under various constraints and formulations. Optimizing the

sampling densities themselves has also been investigated [Karlík

et al. 2019]. Hachisuka et al. [2014] proposed to mutate the choice

of sampling technique when using MIS for Markov chain Monte

Carlo integration.

Bidirectional rendering. Optimal sample allocation for bidirec-

tional rendering algorithms has not been thoroughly explored in

previous work. One example is the number of light subpaths in pho-

ton mapping. Grittmann et al. [2018] have shown that optimizing

this number can have a drastic impact on performance. They used a

very simple heuristic to set it to the number of pixels that require

photons. This approach works only because their emission-guiding

approach focuses photons into important regions that are small in

image space; it cannot be generalized easily. We replace this ad-hoc

heuristic by a generic formulation. Another application is resampled

connections in bidirectional path tracing [Popov et al. 2015; Nabata

et al. 2020], where each camera-subpath vertex is connected to 𝑐

light-subpath vertices. The choice of 𝑐 impacts rendering perfor-

mance, which is why Popov et al. [2015] manually selected a number

for each scene. We show that this selection can be automated. In

fact, we can jointly optimize the number of connections with the

number of light paths along with the decision whether to perform

photon mapping in each pixel.

3 OUR APPROACH
Our goal is to optimize the allocation of samples in MIS estimators,

which has the potential to substantially improve their efficiency. We

attack this problem via a simple brute-force scheme:We compute the

efficiencies of a set of candidate sample-allocation strategies from

a pilot estimation run that typically uses only one technique. (Our

VCM application in Section 4 uses unidirectional path tracing as

the pilot strategy.) Rendering then proceeds with the best strategy;

optionally, the process can be refined iteratively.
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In the remainder of this section, we formulate the problem (Sec-

tion 3.1), describe our optimization algorithm (Section 3.2), and

present an efficient scheme to compute the required quantities (Sec-

tion 3.3). In Appendix A we show how our insights can be used to

improve existing convex optimization approaches, for the special

cases where the optimization objective remains convex.

3.1 Background and problem statement
We consider the definite integral 𝐼 of a function 𝑓 : X → R over some

domain X and a multi-sample MIS estimator ⟨𝐼 ⟩n of the integral

that combines samples from 𝑇 techniques:

𝐼 =

∫
X
𝑓 (𝑥) d𝑥, ⟨𝐼 ⟩n =

𝑇∑
𝑡=1

𝑛𝑡∑
𝑖=1

𝑤n,𝑡 (𝑥𝑡,𝑖 )
𝑓 (𝑥𝑡,𝑖 )

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖 )
. (1)

Here, 𝑛𝑡 samples 𝑥𝑡,𝑖 are drawn from technique 𝑡 , and a weight

𝑤n,𝑡 (𝑥𝑡,𝑖 ) is assigned to each. A provably good choice for the weight-

ing functions𝑤n,𝑡 is the balance heuristic [Veach and Guibas 1995b].

We consider its extension [Grittmann et al. 2019, 2021],

𝑤n,𝑡 (𝑥) =
𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

, (2)

that applies correction factors 𝑐𝑡 (𝑥) to the effective sampling densi-

ties 𝑛𝑡𝑝𝑡 (𝑥), in order to better account for technique variances and

correlations in their samples.

Strategy. We refer to the vector

n = (𝑛1, . . . , 𝑛𝑇 ) (3)

as the sample-allocation strategy. Different strategiesn yield different
MIS estimators ⟨𝐼 ⟩n. The best choice depends on the integrand and

the sampling densities. In many cases it is beneficial to completely

disable individual techniques by setting 𝑛𝑡 = 0. For instance, photon

mapping is of little use in scenes without caustics.

Efficiency. In rendering, the value of each pixel is a separate in-

tegral. Since our goal is to optimize the rendering efficiency of the

whole image, we aim to minimize the product of total expected cost

(i.e., expected render time) and total relative variance (i.e., expected

error) across all integrals:

argmin

n
𝐶 (n)

𝑃∑
𝑗=1

𝑉 [⟨𝐼 𝑗 ⟩n]
𝐼2
𝑗

. (4)

Here, 𝑃 is the number of pixels and 𝑉 [⟨𝐼 𝑗 ⟩n] is the variance of the
𝑗th pixel when using strategy n. Normalizing each variance by the

corresponding squared ground truth 𝐼2
𝑗
is optional; the resulting

relative variance accounts for the varying magnitudes of the indi-

vidual integrals (i.e., bright and dark pixels). 𝐶 (n) is the cost of all
consumed samples across all pixels. It can be approximated with a

heuristic, estimated from rendering statistics, or a mix of both. For

example, our VCM application combines statistics of the average

path lengths and a heuristic based on the number of rays.

Variance vs. second moment. The variance 𝑉 [⟨𝐼 𝑗 ⟩n] of a multi-

sample MIS estimator is the difference between the second moment

𝑀 [⟨𝐼 𝑗 ⟩n] and a residual 𝑟n:

𝑉 [⟨𝐼 ⟩n] = 𝑀 [⟨𝐼 ⟩n] − 𝑟n . (5)

When using the extended balance heuristic (2), the second moment

is the integral

𝑀 [⟨𝐼 ⟩n] =
∫
X

𝑓 2 (𝑥)∑𝑡 𝑤n,𝑡 (𝑥)𝑐𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

d𝑥 (6)

which can be estimated efficiently, as we discuss in Section 3.3.

The residual 𝑟n, however, is a sum of squared integrals, or even

nested squared integrals if samples are correlated. In the context

of VCM, the number of squared integrals is quadratic in the max-

imum path length, making the residual extremely expensive to

estimate. Fortunately, the second moment is generally a good proxy

for the variance: 𝑉 [⟨𝐼 ⟩n] ≈ 𝑀 [⟨𝐼 ⟩n]. Veach and Guibas [1995b]

used this approximation to show the variance guarantees of the

balance heuristic. However, there are two cases where the approxi-

mation fails: when one technique has very low variance [Grittmann

et al. 2019; Veach 1997], or when the samples are severely corre-

lated [Grittmann et al. 2021]. We have found that using the second

moment works well for our optimization. Finding an efficient ap-

proximation or estimation scheme for the residual term is likely to

yield further improvement. Our simple search-based optimization,

described in Section 3.2, readily supports such improvements. The

supplemental document discusses the approximation error further.

Optimization objective. Our goal is to solve the slightly suboptimal

but easier to handle optimization problem

n = argmin

n
𝐶 (n)

𝑃∑
𝑗=1

𝑀 [⟨𝐼 𝑗 ⟩n]
𝐼2
𝑗

, (7)

i.e., to find the sample-allocation strategy n that approximately

maximizes the image-rendering efficiency by minimizing the work-

normalized relative second moments.

3.2 Brute-force optimization
We employ a simple yet effective brute-force search to find the

optimal strategy n that minimizes Eq. (7). The benefit of such a

brute-force approach is that it does not require the objective to

be convex, i.e., it supports arbitrary MIS weighting functions, cost

functions, and additional constraints.

Candidates. We start by specifying a set of 𝑁 promising candidate

sample-allocation strategies {n1, . . . , n𝑁 }. This can be done either

by (regularly) sampling a range of allowed sample counts for each

technique, or by applying prior knowledge to identify combinations

that are likely to be efficient. Depending on the application, sample

counts can be controlled per pixel and/or on an image level. For

example, in VCM the number of light subpaths is specified only

globally, while the number of connections can be set per pixel. A

strategy n = (p, i) can thus vary per pixel, comprising pixel-level

sample counts p and image-level sample counts i.

Optimization. The optimization itself is outlined in Alg. 1 (lines

1-5). We begin by generating samples using a pilot strategy m, ren-

dering an image I = {⟨𝐼1⟩, . . . , ⟨𝐼𝑃 ⟩} and a second-moment image

M = {⟨𝑀1⟩1, . . . , ⟨𝑀𝑃 ⟩𝑁 } storing one moment for each candidate

strategy for every pixel. These estimates are used to first decide

all pixel-level sample counts and then, conditionally on those, the
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image-level ones. For example, for VCM (Section 4) we first decide

whether to enable merging for each pixel, then we determine the

(global) number of light subpaths based on the per-pixel decisions.

Pixel-level optimization. The pixel-level sample counts p𝑗 for a
pixel 𝑗 are optimized by finding the candidate strategy nwith lowest

work-normalized moment and selecting its per-pixel components:

(p𝑗 , ·) = argmin

n∈{n1 ...n𝑁 }
𝑀 [⟨𝐼 𝑗 ⟩n]𝐶 𝑗 (n), (8)

where 𝐶 𝑗 (n) comprises the per-pixel samples’ cost plus 1/𝑃 of the

per-image samples’ cost. This minimization can be done via a sim-

ple linear search, as shown in Alg. 1 (lines 6-10). The robustness of

the optimization is greatly increased by applying low-pass noise

reduction on the second-moment image. It is also beneficial to apply

a filter on the resulting sample-count image, since abrupt changes

in sampling counts can cause visible artifacts. Note that this opti-

mization does not necessarily minimize Eq. (7). Rather, it minimizes

the sum of pixel efficiencies, which is a lower bound of Eq. (7). This

simplification removes the need to pair-wise compare all candi-

dates across all pixels, increasing performance but sacrificing the

capability to balance sampling error across the image.

Image-level optimization. With the pixel-level counts fixed, the

image-level counts can be optimized as sketched in Alg. 1 (lines

12-22). We find the sample counts i that minimize the relative work-

normalized moment (7) given the pixel-level counts p𝑗 :

i = argmin

i∈{i1 ...i𝑁 }

𝑃∑
𝑗=1

𝑀 [⟨𝐼 𝑗 ⟩(p𝑗 ,i) ]
𝐼2
𝑗

𝑃∑
𝑗=1

𝐶 𝑗 (p𝑗 , i). (9)

This is done by first accumulating the relative moments and costs

over all pixels, and then again performing a simple linear search.

Computing the relative moments requires accurate estimates of

the pixel value 𝐼 𝑗 . We found that applying a denoiser on the image

rendered with the pilot strategy (line 13) produces good results.

3.3 Estimating the moments
The key to efficient optimization is to cheaply compute the second

moments of each candidate strategy n = (𝑛1, . . . , 𝑛𝑇 ) from a single

run using the pilot strategy m = (𝑚1, . . . ,𝑚𝑇 ). To facilitate that,

we rewrite the second moment (6) of each candidate in terms of

the second moment of the pilot, with an additional per-sample

correction factor. The second moment of the pilot can be trivially

estimated by summing the square of its samples, and the correction

factor allows us to efficiently compute the moments of all candidates

on-the-fly from the same samples.

In Appendix B we show that the second moment (6) of a candidate

strategy n can be written as

𝑀 [⟨𝐼 ⟩n] =
∫
X

𝑓 2 (𝑥)∑𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)

𝛿n,m (𝑥) d𝑥, (10)

where the fraction involves only the pilot strategy m. The term

𝛿n,m (𝑥) =

(∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)

)
2
∑
𝑡 𝑐𝑡 (𝑥) 𝑛𝑡𝑎𝑡 𝑤a,𝑡 (𝑥)(∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

)
2
∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)

(11)

Algorithm 1. Pseudo-code for our optimization. Given a pilot strategy m,
a set of candidate strategies n1, . . . , n𝑁 , and a cost function𝐶 , we render
an image and estimate the second moments. Then, we first optimize all
pixel-level sample counts p𝑗 , followed by all image-level sample counts i.

1: function FindBestStrategy(m, n1, . . . , n𝑁 ,𝐶)

2: M, I = ComputeMomentImage(m, n1, . . . , n𝑁 )

3: {p𝑗 } = PixelLevelOptimize(M, n1, ... , n𝑁 ,𝐶)

4: i = ImageLevelOptimize(M, I, n1, ... , n𝑁,𝐶 , {p𝑗 })
5: return {p𝑗 }, i ← Set of pixel-level sample counts, image-level sample counts

6: function PixelLevelOptimize(M, n1, . . . , n𝑁 ,𝐶)

7: {𝑀1,1, . . . , 𝑀𝑃,𝑁 } = FilterImage({ ⟨𝑀1 ⟩1 . . . ⟨𝑀𝑃 ⟩𝑁 })
8: for pixel index 𝑗 = 1..𝑃 do ½ Reduce noise in moments

9: (p𝑗 , _ ) = argmin𝑀𝑗,n𝐶 𝑗 (n) ← Linear search

10: return FilterImage({p1, . . . , p𝑃 })
11: ½ Avoid abrupt changes in sample counts

12: function ImageLevelOptimize(M, I, n1, . . . , n𝑁,𝐶 , {p𝑗 })
13: {𝐼1, . . . , 𝐼𝑃 } = DenoiseImage(⟨𝐼1 ⟩, . . . , ⟨𝐼𝑃 ⟩)
14: {𝑅i } = {0, . . . , 0} ← Init. total rel. moment per image-level candidate

15: {𝐶i } = {0, . . . , 0} ← Initialize total cost per image-level candidate

16: for pixel index 𝑗 = 1..𝑃 do
17: for all candidate strategy index 𝑘 = 1..𝑁 do
18: if p𝑗 ≠ p𝑘 then
19: continue ← Skip candidates with different local counts

20: 𝑅i𝑘 += ⟨𝑀𝑗 ⟩𝑘 · 𝐼−2
𝑗

← Accumulate relative moments

21: 𝐶i𝑘 += 𝐶 𝑗 (n𝑘 ) ← Accumulate cost

22: return argmin{𝑅i ·𝐶i } ← Pick best image-level counts via simple search

23: function ComputeMomentImage(m, n1, . . . , n𝑁 )

24: I = { ⟨𝐼1 ⟩, . . . , ⟨𝐼𝑃 ⟩ } = {0, . . . , 0} ← Initialize pixel estimates

25: M = { ⟨𝑀1 ⟩1, . . . , ⟨𝑀𝑃 ⟩𝑁 } = {0, . . . , 0} ← 𝑁 moments per pixel

26: a = {∑𝑁
𝑘=1

𝑛1

𝑘/𝑁 , . . . ,
∑𝑁

𝑘=1
𝑛𝑇
𝑘/𝑁 } ← Set proxy strategy

27: for pixel index 𝑗 = 1..𝑃 do
28: for technique index 𝑡 = 1..𝑇 do
29: for sample index 𝑖 = 1..𝑚𝑡 do
30: 𝑦 =

𝑤m,𝑡 (𝑥𝑡,𝑖 ) 𝑓𝑗 (𝑥𝑡,𝑖 )
𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖 ) ← MIS-weighted pixel 𝑗 estimate

31: ⟨𝐼 𝑗 ⟩ += 𝑦 Æ Precompute terms in 𝛿n,m (𝑥𝑡,𝑖 ) independent of n

32: Precompute

( (∑𝑡
𝑚𝑡
𝑎𝑡

𝑤a,𝑡 (𝑥𝑡,𝑖 ) )2∑
𝑡𝑐𝑡 (𝑥𝑡,𝑖)

𝑚𝑡
𝑎𝑡

𝑤a,𝑡 (𝑥𝑡,𝑖)
,
𝑤a,1 (𝑥𝑡,𝑖 )

𝑎1
, . . . ,

𝑤a,𝑇 (𝑥𝑡,𝑖 )
𝑎𝑇

)
33: for candidate strategy index 𝑘 = 1..𝑁 do
34: ⟨𝑀𝑗 ⟩𝑘 += 𝑦2 · 𝛿n𝑘 ,m (𝑥𝑡,𝑖 ) ← Moment estimate (13)

35: return M, I

is a correction factor involving both strategies, which for the classi-

cal balance heuristic (i.e., 𝑐𝑡 (𝑥) = 1) simplifies to

𝛿baln,m (𝑥) =
∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

. (12)

The correction factor relies on a proxy strategy a = (𝑎1, . . . , 𝑎𝑇 ).
While this strategy is theoretically unnecessary, it serves two prac-

tical purposes: (1) it enables computing the correction factor in a

numerically stable way and (2) it separates out terms not involving

𝑛𝑡 that can be precomputed and reused for all candidate moments.

The proxy strategy can be defined arbitrarily, but for numerical sta-

bility it is beneficial for 𝑎𝑡 and 𝑛𝑡 to have similar orders. We simply

set each 𝑎𝑡 to the average of 𝑛𝑡 across all candidate strategies.
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The estimation of the second moment (10) for a given candidate

strategy n is then relatively straightforward. Simply squaring the

(MIS-weighted) contributions of the pilot samples yields an estimate

for the integral without the correction factor 𝛿n,m. Thus, the only
extra work required is to evaluate the correction for each sample

(which is cheap thanks to the precomputed terms):

⟨𝑀 [⟨𝐼 ⟩n]⟩m =
∑
𝑡

𝑚𝑡∑
𝑖=1

(
𝑤m,𝑡 (𝑥𝑡,𝑖 ) 𝑓 (𝑥𝑡,𝑖 )

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖 )

)
2

𝛿n,m (𝑥𝑡,𝑖 ) . (13)

Lines 23-35 in Alg. 1 show how this moment computation can be

integrated into a rendering iteration. For every sample, the proxy

weights𝑤a,𝑡 are computed once and shared among all correction-

factor 𝛿n,m evaluations. Appendix A shows how the same scheme

can be used to efficiently estimate the first and second derivatives

that arise in the convex optimization used by prior work.

4 APPLICATION AND RESULTS
Our main application is the vertex connection and merging (VCM)

algorithm [Georgiev et al. 2012; Hachisuka et al. 2012]. It combines

bidirectional path tracing (BDPT) [Veach and Guibas 1995a; Lafor-

tune and Willems 1993] with photon mapping [Jensen 1996]. Paths

are traced from the camera and the lights. Each ray along these

paths might hit a light (or the camera), and next event estimation is

done at every vertex to connect to a light (or the lens). On top of

that, each vertex on a camera subpath is connected to some number

of light-subpath vertices. Lastly, merging (a.k.a. photon density es-

timation) is performed at each camera-subpath vertex, except the

first on the lens and the directly visible point.

Optimizing all parameters of VCM involves, e.g., setting the num-

ber of connections for each pixel, point in space, and camera-subpath

length, which is prohibitively expensive. To keep the problem feasi-

ble, we reduce the degrees of freedom by only controlling

(1) 𝑛, the number of light paths traced,

(2) 𝑐 , the number of connections as a global constant, and

(3) 𝜒 𝑗 , whether to perform merging in each pixel 𝑗 .

For the set of candidate strategies, we consider all possible combi-

nations of (with 𝑃 being the number of pixels)

𝑛 ∈
{
1

4

𝑃,
1

2

𝑃,
3

4

𝑃, 𝑃, 2𝑃

}
, 𝑐 ∈ {0, 1, 2, 4, 8, 16}, 𝜒 𝑗 ∈ {0, 1}, (14)

as well as the special case (𝑛 = 0, 𝑐 = 0, 𝜒 𝑗 = 0∀𝑗), i.e., unidirectional
path tracing. Note that the number of light paths 𝑛 is only allowed

to be zero if all other bidirectional techniques are disabled.

4.1 Implementation
We have implemented our method on top of the public code of

Grittmann et al. [2021]. All experiments were run on a 16-core

AMD Ryzen 9 3950X processor with 64GB of memory. The results

shown in the following, unless stated otherwise, are equal-time

renderings after 60s at a resolution of 640 × 480 (we also rendered

some scenes for 25min at 4K resolution, with similar results). We

use the relative mean squared error (relMSE) as an error metric,

which is an estimate of Eq. (4). Since the (rel)MSE is not robust to

outliers, we ignore the 0.01% of pixels (i.e., 30 in total at our typical

resolution) with highest error.

The optimization is done in up to two iterations, each rendering

one sample per pixel.We start with unidirectional path tracing as the

pilot strategy. If the outcome is to switch to a bidirectional technique,

we optimize one more time with the samples of the bidirectional

technique, which gives higher-quality second-moment estimates.

If the pilot decides not to enable bidirectional sampling, no further

optimization is done.

4.1.1 Cost heuristic. The cost of a strategy n is the expected time

it takes to render one iteration with that strategy. We approximate

that cost with a heuristic that roughly corresponds to the number

of ray-tracing and shading operations:

𝐶 (𝑛, 𝑐, 𝜒) = 𝐶
light

�̃�
l
𝑛 + 𝑃�̃�c

(
𝐶cam +𝐶con𝑐 +𝐶m�̃�l𝑛�̃�m

∑
𝑗 𝜒 𝑗

)
, (15)

which is the sum of the cost (incl. next-event estimation) of tracing

𝑛 light paths of average length �̃�
l
, and the cost of tracing 𝑃 camera

paths (i.e., one per pixel) of average length �̃�c performing at each

vertex next-event, connections, and merges. Here, �̃�m is the average

number of photons found by each density estimation, as a fraction

of the total number of photons �̃�
l
𝑛 in the scene.

The relative costs of the different techniques are controlled by four

hyperparameters. 𝐶
light

and 𝐶cam are the combined costs of contin-

uing the respective path at each vertex and performing next-event

estimation.𝐶con is the cost of a single connection and𝐶m is the cost

of a single merge operation. We determined the best values for our

implementation by fitting the cost heuristic to brute-force measured

render times across 25 test scenes:𝐶cam = 𝐶
light

= 1,𝐶con = 0.4, and

𝐶m = 0.5. These numbers are implementation-specific and likely

differ between renderers. The average path lengths are determined

on-the-fly from rendering statistics. When using a unidirectional

pilot strategy, only �̃�c is available, in which case we initialize the

remaining statistics with an initial guess: �̃�
l
= �̃�c, �̃�m = 10

−7
.

The supplemental document shows that the above simple cost

heuristic closely matches the actual render time in our tests. It also

provides empirical evidence indicating that the accuracy of the cost

heuristic is secondary compared to the other sources of error—using

moments instead of variance and noise in the estimates.

4.1.2 Merge mask. Merging only benefits a specific type of effect,

reflected or refracted caustics, that is often limited to small regions

in the image. Hence, a global decision is apt to neglect these small

regions to increase efficiency everywhere else. Therefore, we control

the binary decision whether to perform merging on the pixel-level,

by computing a merge mask.
Care has to be taken to avoid visible artifacts, since we only have

a single sample per pixel. We apply a simple filtering scheme, shown

in Fig. 2. First, the second-moment images are blurred (Gaussian

filter, radius 8) to reduce noise and downsampled (averaged into

8×8-pixel tiles) to reduce overhead. Then, we run our pixel-level

optimization. The resulting mask can still contain gaps from miss-

ing data, where merging in important regions may be incorrectly

disabled. To combat that, we dilate the mask (box, radius 4). Finally,

to remove discontinuties in the noise pattern from abruptly chang-

ing sample counts, which could cause visible artifacts, we blur the

dilated mask (Gaussian, radius 4). The resulting mask after the blur

contains floating point values between zero and one, which we take

as the probability to perform merging at each vertex.
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Fig. 2. When optimizing the pixel-level merging decisions 𝜒 𝑗 , we apply a
simple filtering scheme to increase robustness. The top row shows the effect
of the different operations on the merge mask and the equal-time error. The
bottom row shows an overlay of the mask over the reference image, without
filtering and after applying our filtering.
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Fig. 3. A scene rendered with and without a lamp shade. We show the merge
masks and the rendering speed-up due to our optimization when using the
classical balance heuristic and Grittmann et al.’s [2021] correlation-aware
weights. The lamp shade causes severe covariance in themerging techniques,
and our optimization can further worsen the already poor performance of
the classical balance heuristic. Using the correlation-aware weights avoids
this problem by assigning low MIS weights to the problematic samples.
Hence our optimization does not enable merges because they would not
contribute to the combined estimate.

This simple filtering can be improved further with adaptive ker-

nels and other ideas commonly used by denoising methods. The

supplemental document discusses the impact of the different filters

and their parameters.

4.1.3 Sample correlation. Sample correlation in the merging tech-

niques can be a problem in VCM [Grittmann et al. 2021]. The second

moments can grossly underestimate the actual variance of merging.

Hence, optimizing the sample counts based on second moments (7)

can produce suboptimal results. To circumnavigate this, we utilize

Home Office

Reference VCM Ours abs. Ours rel.

relMSE
MSE
n, c

0.19 (1.00×)
0.11 (1.00×)
307k, 1

0.15 (1.30×)
0.13 (0.83×)
614k, 0

0.05 (4.09×)
0.29 (0.38×)
614k, 16

Fig. 4. In this scene, light tracing is the sole technique that can render the
bright strip around the ceiling (top row, reduced exposure). Optimizing for
absolute moments overfits on this bright region and disables all other tech-
niques for the entire image. Using relative moments resolves the problem.
Note that “Ours rel.” yields lower relMSE but higher MSE than vanilla VCM.

the correlation-aware MIS weights of Grittmann et al. [2021]. The

effect of optimizing the sample allocation w.r.t. these weights is

shown in Fig. 3. It shows the merge masks and renderings with

and without correlation-aware weights. We report speed-ups over

vanilla VCM (i.e., 𝑛 = 𝑃 , 𝑐 = 1, 𝜒 𝑗 = 1) using both the classical

balance heuristic and the correlation-aware weights. Applying our

moment-based optimization further amplifies the correlation prob-

lem when using the balance heuristic which already struggles with

poor approximation from second moments. Applying it w.r.t. the

correlation-aware weights produces consistent speed-ups. All re-

sults in the following use the correlation-aware weights for both

the baseline and our method.

4.1.4 Relative error. We found that using the relative moments

(7) (rather than absolute moments) is essential when optimizing

the number of light paths 𝑛 and global number of connections 𝑐 .

Figure 4 shows an example where the scene is dominated by in-

direct illumination from a bright strip of light along the ceiling.

The direct illumination in the strip is best handled by light tracing.

But all other illumination in the scene is best handled by bidirec-

tional connections. Optimizing the absolute moments (i.e., omitting

the pixel-value normalization) results in overfitting on the bright

direct illumination and disables all connections. Optimizing with

relative moments instead yields 𝑐 = 16 connections and four times

faster rendering. The caveat is that this approach requires good es-

timates/approximations of the ground-truth pixel values. To obtain

those from a one-sample-per-pixel rendering, we denoise the image

using Intel’s Open Image Denoise [Áfra 2019].

4.1.5 Choosing the pilot strategy. We consider two options for the

pilot strategy: forward path tracing (PT) or vanilla VCM (𝑛 = 𝑃 ,

𝑐 = 1, 𝜒 𝑗 = 1). Figure 5 compares these options on two extreme

cases, rendered for only 10s. In simple scenes that are best rendered

unidirectionally, such as Modern Living Room, using vanilla VCM

as the pilot reduces performance for shorter render times, due to the

wasted bidirectional samples in the first iteration. With PT as the

pilot, the overhead is limited to that of the optimization. For scenes

like Sponge, which is illuminated solely by a caustic, starting with

VCM provides the best performance because there the unidirectional

samples from a PT pilot are wasted. However, these unidirectional
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time, spp
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0.07 (1.41×)
24spp

0.10 (1.00×)
25spp

6.18 (0.02×)
87spp

Fig. 5. Impact of the pilot strategy in short renderings. We show the relMSE
after 10s (lower is better) and the speed-up in parentheses compared to
the baseline (higher is better). Modern Living Room does not benefit from
bidirectional methods. Using forward path tracing (PT) as the pilot limits the
overhead to that of the optimizer (2%). Starting with VCM incurs additional
overhead from (wasted) bidirectional samples. The solely caustic illumina-
tion in the Sponge scene is difficult to render with PT. Nevertheless, using
PT as a pilot gives enough information to update the sampling strategy and
still achieve faster rendering than vanilla VCM.

samples are much cheaper than bidirectional ones, and they provide

sufficient information for our optimization.

An advantage of a vanilla VCM pilot is the lower noise in the

second moment estimates used by our optimization. We found that

PT and VCM pilots produce very similar results when optimizing

image-level parameters, e.g., number of light paths 𝑛 and number

of connections 𝑐 . However, for pixel-level optimization, a single

sample per pixel from a PT pilot is insufficient.

Our solution is to optimize in two stages. We start with a PT

pilot and only image-level optimization. If that optimization enables

bidirectional sampling, we render one iteration with the optimized

bidirectional strategy. The second moments estimated from that

iteration are then used to perform a full optimization, including the

pixel-level merge mask. This hybrid pilot minimizes overhead in

simple scenes and produces the same optimization as a VCM pilot

in difficult scenes.

The rendered image of the pilot can be averaged into the final

result. However, the PT pilot may have excessive noise that will not

vanish quickly. Thus, if bidirectional sampling is enabled by the PT

pilot, we discard both the rendered image and the second moments

from the PT pilot, and start from scratch with our optimized VCM

pilot. The rendered image of the VCM pilot is averaged with the

subsequent iterations, as it has a similar level of noise.

4.2 Results
We tested our method on bidirectional path tracing (BDPT) and

full VCM. An overview of the results across our 25 test scenes (22

for BDPT) is shown in Table 1. Our optimized BDPT achieves 18%

faster rendering on average than vanilla BDPT (𝑛 = 𝑃 , 𝑐 = 1). Our

optimized VCM achieves consistent speed-ups of up to 5× over

vanilla VCM (𝑛 = 𝑃 , 𝑐 = 1, 𝜒 𝑗 = 1) across all scenes; the worst case

Table 1. Statistics of the speed-up (higher is better) of our method across
the 25 test scenes of the VCM application and the 22 scenes of the BDPT
application. Computed after 60s rendering, averaged across 5 runs, using
the relMSE error metric with outlier removal.

Speed-up vs. path tracing vs. vanilla

BDPT VCM BDPT VCM

Average 3.14× 5.00× 1.18× 1.68×
Worst 0.99× 0.98× 0.95× 1.12 ×
Best 97.09× 600.77× 1.60× 5.32×

1×

10×

100×
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Fig. 6. Speed-up in terms of relMSE of different methods over unidirectional
path tracing. ‘Guided PT’ is the path guiding method of Ruppert et al. [2020].
Our method consistently outperforms unidirectional PT and vanilla VCM.

is still 12% faster. This is because merging is expensive and often not

beneficial. In both variants, our method performs consistently faster

than unidirectional path tracing (PT), with a worst-case slowdown

of 2% and a best-case speed-up of 600×.
Figure 6 plots the speed-ups over PT of all methods for multiple

test scenes. It also compares the performance to that of guided for-

ward path tracing [Ruppert et al. 2020]. The supplemental materials

provide an interactive viewer with all rendered images.

4.2.1 Bidirectional path tracing. Figure 7 shows two scenes ren-

dered with forward path tracing, vanilla BDPT, and our adaptive

BDPT. Home Office is dominated by diffuse indirect illumination

which benefits from many bidirectional connections.Modern Hall

is overall well-handled by forward path tracing. By reducing the

number of light paths, our method finds a sweet-spot providing a

minor increase in performance. In both scenes, the overhead due to

the unidirectional pilot iteration reduces performance initially, but

for longer renderings our method performs consistently better than

both baselines.

The first two columns of plots in Fig. 7 compare our estimated

work-normalized secondmoments to ground-truthwork-normalized

variances. The ground-truth is obtained by brute-force rendering

with different sample counts and computing the product of relMSE

and render time. Error values are plotted for different 𝑛 given our

decision for 𝑐 (first column) and for different 𝑐 , given our decision

for 𝑛 (second column). Our estimates do not perfectly match the

ground truth, though they yield the same or very similar minima,

which suffices for our optimization.
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Fig. 7. Equal-time (60s) comparison between our optimized BDPT and two baselines. 𝑛 and 𝑐 are the number of light subpaths and bidirectional connections,
respectively. The numbers in parentheses are the speed-ups (higher is better) over forward path tracing (PT). The plots compare our estimated work-normalized
moments to ground truth work-normalized variances for different choices of 𝑛 and 𝑐 . The dashed red line marks the sample count chosen by our optimization.
Basing our optimization on the second moments produces similar sample counts as the much more expensive full variances and yields consistent equal-time
speed-ups compared to both baselines.
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Fig. 8. Equal-time (60s) comparison between our optimized VCM and three baselines. The numbers in parentheses are the speed-up (higher is better) over
forward path tracing (PT). The false-color image visualizes our per-pixel decision whether to perform merging. The Pool scene is dominated by caustics and
benefits mostly from merging and light tracing. Veach Bidir is mostly indirectly illuminated and features a small glass egg, benefiting from bidirectional
connections and local merging. House is best rendered unidirectionally, and our method sticks to PT, incurring less than 1% overhead due to the optimization.
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Fig. 9. Comparison of our aggressively filtered merge masks against ground-truth masks. Our masks are computed from 1-spp VCM with image-level
optimization. The converged masks are based on second-moment estimates obtained from 4096 iterations of vanilla VCM.

4.2.2 Full VCM. Adding merging into the mix of techniques en-

ables robust rendering of reflected and refracted caustics. In Fig. 8 we

compare the performance of our optimized VCM to different base-

lines. In both VCM variants we use correlation-aware MIS weight-

ing [Grittmann et al. 2021].

The exterior, environment-map lit Pool scene contains a caustic

that is very challenging for unidirectional path tracing to sample.

VCM performs much better but also struggles with the very low

photon density. Our optimization improves efficiency by using the

maximum allowed number of light paths, disabling connections,

and limiting merges to the region containing refracted caustics.

The Veach Bidir scene [Veach and Guibas 1995a] was originally

modelled to showcase BDPT. Naturally, it benefits from many light

paths and connections, but also features a caustic that benefits from

merging. The merge mask generated by our method restricts the

costly merges to the caustic image region. The error over time (last

column) in this scene reveals the impact of starting with a PT pilot.

This first unidirectional iteration is wasted. Hence, our method

performs worse than vanilla VCM for short renderings of less than

three seconds. Note that our optimized VCM has a numerically

higher error than vanilla BDPT, but produces a qualitatively better

image. The reason is that the reflected caustic in the glass egg

manifests in BDPT as two outlier pixels that are ignored by our

error metric. Our VCM captures this caustic almost perfectly, at the

cost of slightly increased error elsewhere.

Lastly, the diffuse exterior House scene is a case where bidi-

rectional sampling is wasteful. Vanilla VCM and BDPT are much

slower than forward path tracing in this case. Our optimized VCM

completely avoids tracing paths from the lights and only incurs a

tiny (< 1%) overhead from the optimization. The result is visually

indistinguishable from the PT image.

4.2.3 Merge masks. Obtaining a reliable merge mask from a few

(or even one) samples per pixel requires filtering that noisy data.

Figure 9 compares our masks to ones obtained from ground-truth

second moments computed from 4096 iterations of vanilla VCM.

Our filtered 1-spp mask covers all crucial regions but can, of course,

be improved further. An interesting insight is that merges are mostly

(though not always) useful in pixels that see highly glossy surfaces.

A heuristic that limits merging to such pixels, based directly on

material properties, could eliminate the overhead of our merge-

mask computation. Such a heuristic would be reflected in the MIS

weights, as part of the effective density 𝑛𝑝 (𝑥), hence it trivially

integrates into our optimization.

4.2.4 Overhead. The main computational cost in our approach is

the large number of moments that are estimated and processed. The

VCM application computes 61 second moments per pixel (one for

each candidate from Eq. (14)), which requires ∼500MB of memory

at full-HD image resolution. This cost can be reduced by computing

per-tile instead of per-pixel moments (an 8 × 8 tiling reduces the

full-HD memory consumption to ∼8MB).

The overhead of our method also depends on the outcome of

the optimization after the initial path-tracing (PT) pilot run. If the

decision is to stick to PT, the overhead of our implementation is on

average 82% (∼141ms) of the cost of tracing one path per pixel. This

comprises the cost of denoising the image (the main bottleneck)

and accumulating and processing the per-pixel moments for the

image-level decisions.

If the decision after the PT pilot is to discard the rendering and

switch to VCM, the overhead increases by the cost of the discarded

PT iteration and the cost of constructing the merge mask. In our

VCM implementation it amounts on average to 3.3× (∼1.3 s) the cost
of a single iteration of our optimized VCM. Most of that overhead

is due to the filtering applied when constructing the merge mask.

Hence, in our BDPT implementation, the overhead is only 1.5×
(∼498ms) the cost of a single iteration of our optimized BDPT.

Note that we have not spent much effort on optimizing our code.

The overhead can potentially be reduced significantly: Our opti-

mization consists solely of trivially parallelizable image processing

operations that could, e.g., be run on a GPU. We leave such engi-

neering to future work, since the results are already consistently

faster than unidirectional path tracing, despite the overhead.

5 DISCUSSION AND FUTURE WORK
The threemain limitations of our method are the overhead, error due

to noisy estimates, and error due to approximations. Also, the quality

of the results and the range of possible applications can be further

improved by making the decisions more local, accounting for the

effect of changing sampling densities (e.g., guiding), or even jointly

optimizing the MIS weights [Kondapaneni et al. 2019], sampling

densities [Karlík et al. 2019], and sample allocations.
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Divide-and-conquer optimization. The overhead of our optimiza-

tion can be reduced by reducing the number of candidate sample-

allocation strategies. Additionally, the set of candidates could be

altered between iterations. For example, a divide and conquer ap-

proach could start with just two candidates in the first iteration.

The second iteration would then generate new candidates, e.g. by

perturbing the better of the initial two. Iteratively refining the de-

cision in this way drastically reduces the overhead, but it can also

take longer to find the best strategy.

Noisy estimates. Optimizing the per-pixel merging decisions re-

quires careful filtering, since the optimization is based on the sam-

ples of a single iteration. The estimation noise has been the biggest

problem in our evaluation, with the filtering having a significant

impact on the result quality. Very noisy input samples can lead

to poor pixel-level decisions, which in turn could produce visible

artifacts. This problem is similar to that in adaptive sampling meth-

ods which decide on the number of samples per pixel based on

variance estimates [Zwicker et al. 2015]. Future work could make

our method more robust by transferring advances from adaptive

sampling and reconstruction to our context. An interesting idea

would be to replace our simple filtering pipeline by a learning ap-

proach, i.e., training a specialized denoising network to construct a

merge mask. A simpler option is to use multiple pilot iterations to

estimate the second moments before optimizing the sample counts,

potentially driving that process by adaptive sampling too.

Approximation error. A key reason why our brute-force scheme

works well in practice is that the full variance is approximated

by the second moments. However, that is also the main source of

approximation error, as we detail in the supplemental document.

Only considering the secondmoments can lead to suboptimal sample

allocations, e.g., in the presence of sample correlation. More accurate

approximations, or even unbiased estimates of the full variance are

apt to improve the results further. Also, we have ignored the fact

that vertex merging (i.e., photon mapping) is biased. Estimating that

bias and incorporating it into our objective, ideally without having

to perform merging, may also improve results.

Optimization granularity. Our sample-allocation optimization is

carried out in screen space, but it is possible to consider a finer

granularity. For example, the number of bidirectional connections

could be optimized within spatial regions in a scene. While increas-

ing the accuracy, making decisions more localized also hazards the

robustness, as fewer samples are available to compute the required

quantities.

Unknown sampling densities. Optimizing the MIS sample alloca-

tion requires knowledge of the sampling densities of the different

techniques. However, these densities might themselves be subject

to change, or completely unknown. For example, photon emission

guiding [Vorba et al. 2014; Grittmann et al. 2018] produces densi-

ties that change over time, while Markov chain Monte Carlo ap-

proaches [Veach and Guibas 1997; Šik and Křivánek 2018; Šik and

Křivánek 2019; Šik et al. 2016] are unable to compute the exact den-

sities in the first place. Future work could look into approximations

that predict the densities of such techniques. For example, by pre-

tending that they are proportional to the target function [Kelemen

et al. 2002].

6 CONCLUSION
We propose a method to automatically adapt the set of sampling

techniques in MIS, and their sample counts, to a given input. Our

application focuses on bidirectional rendering algorithms, but our

method is general and applicable to any MIS combination. The key

ingredient is a numerically robust and computationally efficient

scheme for estimating the second moments of different sample-

allocation strategies.

In practice, our adaptive VCM implementation never performs

significantly worse than plain unidirectional path tracing, even on

simple scenes. At the same time, complex scenes with strong indirect

lighting and reflected caustics are rendered more efficiently than

vanilla VCM with fixed parameters.

Rendering efficiency often relies on manual per-scene parameter

tuning. The consistent speed-ups achieved by our method show that

it is possible, and beneficial, to automate this tedious process.
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A CONVEX OPTIMIZATION
The objective in Eq. (7) can be made convex under two simplifying

assumptions: if the classical balance heuristic is used, i.e., 𝑐𝑡 (𝑥) =
1∀𝑡 , and the cost is linear in the sample counts, i.e., 𝐶 (n) = ∑

𝑡 𝛾𝑡𝑛𝑡 .

In that case,∑
𝑖

𝑀 [⟨𝐼 ⟩n]
𝐼2
𝑖

𝐶 (n) =
∑
𝑖

∑
𝑡 𝛾𝑡𝑛𝑡

𝐼2
𝑖

∫
X

𝑓 2 (𝑥)∑
𝑡 𝑛𝑡𝑝𝑡 (𝑥)

d𝑥 (16a)

=
∑
𝑖

1

𝐼2
𝑖

∫
X

𝑓 2 (𝑥)∑
𝑡 𝑟𝑡

𝑝𝑡 (𝑥)
𝛾𝑡

d𝑥 =:𝑊 (r), (16b)

where

𝑟𝑡 =
𝛾𝑡𝑛𝑡∑
𝑘 𝛾𝑘𝑛𝑘

∈ [0, 1] (17)

is the relative computation time invested into technique 𝑡 . Our

task thus reduces to finding the optimal r = (𝑟1 . . . r𝑇 ). Since the
additional 𝛾𝑡 factors are constant,𝑊 (r) in Eq. (16b) is a convex

function in the cost ratios 𝑟𝑡 , because its partial derivatives have

the same form as those used by previous work [Sbert et al. 2019;

Murray et al. 2020] and satisfy the same conditions (i.e., yield a

positive-definite Hessian).

Hence, we can apply the same Newton-Raphson root-finding

as previous work and find the optimal sampling ratio vector r by
iteratively updating

r𝑛 = r𝑛−1 −H−1
r [𝑊 ] (r𝑛−1) ∇r𝑊 (r𝑛−1) , (18)

starting with an initial guess 𝑟0. Each element of the HessianHr [𝑊 ]
and gradient ∇r𝑊 is given by a sum of integrals identical to those

of previous work [Murray et al. 2020], except that each PDF 𝑝𝑡 (𝑥)
is divided by the sample cost 𝛾𝑡 . For example,

𝑑

𝑑𝑟𝑡
𝑊 =

∑
𝑖

1

𝐼2
𝑖

∫
X

𝑓 2 (𝑥)
(
𝑝𝑇−1 (𝑥)
𝛾𝑇−1

− 𝑝𝑡 (𝑥)
𝛾𝑡

)
(∑

𝑡 ′ 𝑟𝑡 ′
𝑝𝑡′ (𝑥)
𝛾𝑡′

)
2

d𝑥, (19)

where, like previous work, we have used the fact that the ratios

must sum to one, to replace the last ratio 𝑟𝑇 = 1−∑
𝑡<𝑇−1 𝑟𝑡 by one

minus the sum of all others.

The partial derivatives (19) suffer from a similar problem regard-

ing numerical robustness as the second moments: The numerator

and denominator inside the integral contain terms involving the

PDFs. This is fine for simple applications like direct illumination,

where the low-dimensional PDFs can be represented by floating

point arithmetic. But, e.g., for bidirectional algorithms, naively com-

puting the PDFs directly is not an option.

Following the same idea as for our second moment estimation,

we re-write the derivatives based solely on MIS weights. Here, we
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discuss the example of the first derivative (19), but the second deriva-

tives can be computed in exactly the same manner:∫
X

𝑓 2 (𝑥)
(
𝑝𝑇−1 (𝑥)
𝛾𝑇−1

− 𝑝𝑡 (𝑥)
𝛾𝑡

)
(∑

𝑡 ′ 𝑟𝑡 ′
𝑝𝑡′ (𝑥)
𝛾𝑡′

)
2

d𝑥 (20a)

= 𝐶 (n)2
∫
X


𝑓 2 (𝑥) 𝑝𝑇−1 (𝑥)

𝛾𝑇−1

(∑𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥))2
−

𝑓 2 (𝑥) 𝑝𝑡 (𝑥)𝛾𝑡

(∑𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥))2

 d𝑥 (20b)

= 𝐶 (n)2
∫
X


𝑓 2 (𝑥) 𝑤n,𝑇−1 (𝑥)

𝛾𝑇−1 𝑛𝑇−1∑
𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

−
𝑓 2 (𝑥) 𝑤n,𝑡 (𝑥)

𝛾𝑡 𝑛𝑡∑
𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

 d𝑥 (20c)

That is, the derivatives can be computed exactly like the second

moments, because they essentially are second moments—just with

some extra MIS weight(s) multiplied on them. Thus, we can use the

same steps as Eq. (24a) and Eq. (25) to convert an arbitrary pilot

moment into the desired derivatives.

This extends the previous convex optimization approaches by ad-

ditionally taking sample cost into account, and averaging decisions

over an image. It also enables optimization without using the initial

guess, or intermediate results, as actual sampling strategies.

B ROBUST MOMENT ESTIMATION
We are interested in estimating the second moment 𝑀 [⟨𝐼 ⟩n] of a
candidate strategy n using the samples of another strategym. Simply

squaring and summing up the contributions of those samples yields

an unbiased estimate of the second moment of m:∑
𝑡

𝑚𝑡∑
𝑖=1

(
𝑤m,𝑡 (𝑥𝑡,𝑖 ) 𝑓 (𝑥𝑡,𝑖 )

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖 )

)
2

≈
∫
X

𝑓 2(𝑥)∑𝑡𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)

d𝑥 = 𝑀 [⟨𝐼 ⟩m] .

To arrive at an estimator for the desired secondmoment𝑀 [⟨𝐼 ⟩n], we
write𝑀 [⟨𝐼 ⟩n] in terms of the above integral but with an additional

correction factor:

𝑀 [⟨𝐼 ⟩n] =
∫
X

𝑓 2 (𝑥)∑𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)

𝛿n,m (𝑥) d𝑥, (21)

where

𝛿n,m (𝑥) =
∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

(22)

simply replaces the sums in the numerator and the denominator

with the desired ones. To obtain the desired estimator, we only

need to additionally multiply each squared sample contribution

by 𝛿n,m (𝑥𝑡,𝑖 ), as we do in Eq. (13). Unfortunately, severe loss of

numerical precision can be incurred when computing the involved

sums of PDFswhosemagnitudes can varywildly. To that end, we can

rewrite these sums in terms of MIS weights which can be evaluated

in a numerically robust manner:∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

=
∑
𝑡

𝑚𝑡

𝑛𝑡

𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

=
∑
𝑡

𝑚𝑡

𝑛𝑡
𝑤n,𝑡 (𝑥) .

Substituting this result into Eq. (22) yields a numerically robust

expression for the correction factor:

𝛿n,m (𝑥) =
(∑

𝑡

𝑚𝑡

𝑛𝑡
𝑤n,𝑡 (𝑥)

) ∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

. (23)

However, the evaluation of this expression can be inefficient: It

would require computing (and storing) the weights𝑤n,𝑡 and𝑤m,𝑡

for every sample 𝑥𝑡,𝑖 , technique 𝑡 , and candidate strategy n. For
complex applications like bidirectional path tracing, this will quickly

become expensive as each weight computation requires a full sweep

over the vertices of the path represented by 𝑥𝑡,𝑖 . To that end, we

express the MIS weights of any strategy in terms of the weights of

hypothetical strategy a = (𝑎1, . . . , 𝑎𝑇 ), with 𝑎𝑡 > 1∀𝑡 , using similar

manipulations as above:

𝑤n,𝑡 (𝑥) =
𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(24a)

=
𝑛𝑡

𝑎𝑡

𝑐𝑡 (𝑥)𝑎𝑡𝑝𝑡 (𝑥)∑
𝑘 𝑐𝑘 (𝑥)𝑎𝑘𝑝𝑘 (𝑥)

∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑎𝑡 ′𝑝𝑡 ′ (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(24b)

=

𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 ′
𝑛𝑡′
𝑎𝑡′

𝑤a,𝑡 ′ (𝑥)
. (24c)

We substitute this result three times into Eq. (23) to obtain

𝛿n,m (𝑥) =
(∑

𝑡

𝑚𝑡

𝑛𝑡

𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 ′
𝑛𝑡′
𝑎𝑡′

𝑤a,𝑡 ′ (𝑥)

) ∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

(25)

=

∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)

1

1∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

=

∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

∑
𝑡 𝑐𝑡 (𝑥) 𝑛𝑡𝑎𝑡 𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 𝑐𝑡 (𝑥)𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)

,

which is identical to the expression in Eq. (11).
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