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Fig. 1. We devise a perceptually based model to optimize the error of Monte Carlo renderings. Here we show our vertical iterative minimization algorithm
from Section 4.1: Given 4 input samples per pixel (spp), it selects a subset of them to produce an image with substantially improved visual fidelity over a simple
4-spp average. The optimization is guided by a surrogate image obtained by regularizing the noisy input; we also show using the ground-truth image as a guide.
The power spectrum of the image error, computed on 32×32-pixel tiles, indicates that our method distributes pixel error with locally blue-noise characteristics.

Synthesizing realistic images involves computing high-dimensional light-

transport integrals. In practice, these integrals are numerically estimated

via Monte Carlo integration. The error of this estimation manifests itself

as conspicuous aliasing or noise. To ameliorate such artifacts and improve

image fidelity, we propose a perception-oriented framework to optimize the

error of Monte Carlo rendering. We leverage models based on human per-

ception from the halftoning literature. The result is an optimization problem

whose solution distributes the error as visually pleasing blue noise in image

space. To find solutions, we present a set of algorithms that provide varying

trade-offs between quality and speed, showing substantial improvements

over prior state of the art. We perform evaluations using quantitative and

error metrics, and provide extensive supplemental material to demonstrate

the perceptual improvements achieved by our methods.
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1 INTRODUCTION
Monte Carlo sampling produces approximation error. In rendering,

this error can cause visually displeasing image artifacts, unless con-

trol is exerted over the correlation of the individual pixel estimates.

A standard approach is to decorrelate these estimates by random-

izing the samples independently for every pixel, turning potential

structured artifacts into white noise.

In digital halftoning, the error induced by quantizing continuous-

tone images has been studied extensively. Such studies have shown

that a blue-noise distribution of the quantization error is perceptu-

ally optimal [Ulichney 1987], achieving substantially higher image

fidelity than a white-noise distribution. Recent works have proposed

empirical means to transfer these ideas to image synthesis [Georgiev

and Fajardo 2016; Heitz and Belcour 2019; Heitz et al. 2019; Ahmed

and Wonka 2020]. Instead of randomizing the pixel estimates, these

methods introduce negative correlation between neighboring pixels,

exploiting the local smoothness in images to push the estimation

error to the high-frequency spectral range.

We propose a theoretical formulation of perceptual error for im-

age synthesis which unifies prior methods in a common framework

and formally justifies the desire for blue-noise error distribution. We

extend the comparatively simpler problem of digital halftoning [Lau

and Arce 2007] where the ground-truth image is given, to the sub-

stantially more complex one of rendering where the ground truth is

the sought result and thus unavailable. Our formulation bridges the

gap between multi-tone halftoning and rendering by interpreting

Monte Carlo estimates for a pixel as its admissible ‘quantization

levels’. This insight allows virtually any halftoning method to be

adapted to rendering. We demonstrate this for the three main classes
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of halftoning algorithms: dither-mask halftoning, error diffusion

halftoning, and iterative energy minimization halftoning.

Existing methods [Georgiev and Fajardo 2016; Heitz and Bel-

cour 2019; Heitz et al. 2019] can be seen as variants of dither-mask

halftoning. They distribute pixel error according to masks that are

optimized w.r.t. a target kernel, typically a Gaussian. The kernel can

be interpreted as an approximation to the human visual system’s

point spread function [Daly 1987; Pappas and Neuhoff 1999]. We

revisit the kernel-based perceptual model from halftoning [Sullivan

et al. 1991; Analoui and Allebach 1992; Pappas and Neuhoff 1999]

and adapt it to rendering. The resulting energy can be directly used

for optimizing Monte Carlo error distribution without the need for a

mask. This formulation help us expose the underlying assumptions

of existing methods and quantify their limitations. In summary:

● We formulate an optimization problem for rendering error by

leveraging kernel-based perceptual models from halftoning.

● Our formulation unifies prior blue-noise error distribution meth-

ods and makes all their assumptions explicit, outlining general

guidelines for devising new methods in a principled manner.

● Unlike prior methods, our formulation simultaneously optimizes

for both the magnitude and the image distribution of pixel error.

● We devise four different practical algorithms based on iterative

minimization, error diffusion, and dithering from halftoning.

● We demonstrate substantial visual improvements over prior art,

while using the same input rendering data.

2 RELATED WORK
Our work focuses on reducing and optimizing the distribution of

Monte Carlo pixel-estimation error. In this section we review prior

work with similar goals in digital halftoning (Section 2.1) and image

synthesis guided by energy-based (Section 2.2) and perception-based

(Section 2.3) error metrics. We achieve error reduction through care-

ful sample placement and processing, and discuss related rendering

approaches (Section 2.4).

2.1 Digital halftoning
Digital halftoning [Lau and Arce 2007] involves creating the illu-

sion of continuous-tone images through the arrangement of binary

elements; various algorithms target different display devices. Bayer

[1973] developed the widely used dispersed-dot ordered-dither pat-

terns. Allebach and Liu [1976] introduced the use of randomness in

clustered-dot ordered dithering. Ulichney [1987] introduced blue-
noise patterns that yield better perceptual quality, and Mitsa and

Parker [1991] mimicked those patterns to produce dither arrays (i.e.,

masks) with high-frequency characteristics. Sullivan et al. [1991]

developed a Fourier-domain energy function to obtain visually opti-

mal halftone patterns; the optimality is defined w.r.t. computational

models of the human visual system. Analoui and Allebach [1992]

devised a practical algorithm for blue-noise dithering through a

spatial-domain interpretation of Sullivan et al.’s model. Their ap-

proach was later refined by Pappas and Neuhoff [1999].

The void-and-cluster algorithm [Ulichney 1993] uses a Gaussian

kernel to create dither masks with isotropic blue-noise distribu-

tion. This approach has motivated various structure-aware halfton-

ing algorithms in graphics [Ostromoukhov 2001; Pang et al. 2008;

Chang et al. 2009]. In the present work, we leverage the kernel-based

model [Analoui and Allebach 1992; Pappas and Neuhoff 1999] in

the context of Monte Carlo rendering [Kajiya 1986].

2.2 Quantitative error assessment in rendering
It is convenient to measure the error of a rendered image as a single

value; vector norms like the mean squared error (MSE) are most

commonly used. However, it is widely acknowledged that such sim-

ple metrics do not accurately reflect visual quality as they ignore the

perceptually important spatial arrangement of pixels. Various theo-

retical frameworks have been developed in the spatial [Niederreiter

1992; Kuipers and Niederreiter 1974] and Fourier [Singh et al. 2019]

domains to understand the error reported through these metrics.

The error spectrum ensemble [Celarek et al. 2019] measures the

frequency-space distribution of the error.

Many denoising methods [Zwicker et al. 2015] employ the afore-

mentionedmetrics to obtain noise-free results fromnoisy renderings.

Even if the most advanced denoising techniques driven by such met-

rics can efficiently steer adaptive sampling [Chaitanya et al. 2017;

Kuznetsov et al. 2018; Kaplanyan et al. 2019], they locally determine

the number of samples per pixel, ignoring the aspect of their specific

layout in screen space.

Our optimization framework employs a perceptual MSE-based

metric that accounts for both the magnitude and the spatial distri-

bution of pixel-estimation error. We argue that the spatial sample

layout plays a crucial role in the perception of a rendered image;

the most commonly used error metrics do not capture this aspect.

2.3 Perceptual error assessment in rendering
The study of the human visual system (HVS) is still ongoing, andwell

understood are mostly the early stages of the visual pathways from

the eye optics, through the retina, to the visual cortex. This limits

the scope of existing HVS computational models used in imaging

and graphics. Such models should additionally be computationally

efficient and generalize over the simplistic stimuli that have been

used in their derivation through psychophysical experiments.

Contrast sensitivity function. The contrast sensitivity function

(CSF) is one of the core HVS models that fulfills the above con-

ditions and comprehensively characterizes overall optical [Wes-

theimer 1986; Deeley et al. 1991] and neural [Souza et al. 2011]

processes in detecting contrast visibility as a function of spatial

frequency. While originally modeled as a band-pass filter [Barten

1999; Daly 1992], the CSF’s shape changes towards a low-pass filter

with retinal eccentricity [Robson and Graham 1981; Peli et al. 1991]

and reduced luminance adaptation in scotopic and mesopic levels

[Wuerger et al. 2020]. Low-pass characteristics are also inherent

for chromatic CSFs [Mullen 1985; Wuerger et al. 2020; Bolin and

Meyer 1998]. In many practical imaging applications, e.g., JPEG com-

pression [Rashid et al. 2005], rendering [Ramasubramanian et al.

1999], or halftoning [Pappas and Neuhoff 1999], the CSF is modeled

as a low-pass filter, which also allows for better control of image

intensity. By normalizing such a CSF by the maximum contrast-

sensitivity value, a unitless function akin to the modulation transfer

function (MTF) can be derived [Daly 1987; Mannos and Sakrison

1974; Mantiuk et al. 2005; Sullivan et al. 1991; Souza et al. 2011] that
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after transforming from the frequency to the spatial domain results

in the point spread function (PSF) [Analoui and Allebach 1992; Pap-

pas and Neuhoff 1999]. Following Pappas and Neuhoff [1999], we

approximate such a PSF by a Gaussian filter; the resulting error is

practically negligible for a pixel density of 300 dots per inch (dpi)

and observer-to-screen distance larger than 60 cm.

Advanced quality metrics. More costly, and often less robust, mod-

eling of the HVS beyond the CSF is performed in advanced quality

metrics [Lubin 1995; Daly 1992; Mantiuk et al. 2011]. Such metrics

have been adapted to rendering to guide the computation to image

regions where the visual error is most strongly perceived [Bolin

and Meyer 1995, 1998; Ramasubramanian et al. 1999; Ferwerda et al.

1996; Myszkowski 1998; Volevich et al. 2000]. An important applica-

tion is visible noise reduction in path tracing via content-adaptive

sample-density control [Bolin and Meyer 1995, 1998; Ramasubrama-

nian et al. 1999]. Our framework enables significant reduction of

noise visibility for the same sampling budget.

2.4 Blue-noise error distribution in rendering
Mitchell [1991] first observed that high-frequency error distribution

is desirable for stochastic rendering. Only recently, Georgiev and

Fajardo [2016] adopted techniques from halftoning to correlate pixel

samples in screen space and distribute path-tracing error as blue

noise, with substantial perceptual quality improvements. Heitz et al.

[2019] built on this idea to develop a progressive quasi-Monte Carlo

sampler that further improves quality. Ahmed and Wonka [2020]

proposed a technique to coordinate quasi-Monte Carlo samples in

screen space inspired by error diffusion.

Motivated by the results of Georgiev and Fajardo [2016], Heitz

and Belcour [2019] devised a method to directly optimize the distri-

bution of pixel estimates, without operating on individual samples.

Their pixel permutation strategy fits the initially white-noise pixel

intensities to a prescribed blue-noise mask. This approach scales

well with sample count and dimension, though its reliance on prior

pixel estimates makes it practical only for animation rendering

where it is susceptible to quality degradation.

We propose a perceptual error framework that unifies these two

general approaches, exposing the assumptions of existing methods

and providing guidelines to alleviate some of their drawbacks.

3 PERCEPTUAL ERROR MODEL
Our aim is to produce Monte Carlo renderings that, at a fixed sam-

pling rate, are perceptually as close to the ground truth as possible.

This goal requires formalizing the perceptual image error along

with an optimization problem that minimizes it. In this section, we

build a perceptual model upon the extensive studies done in the

halftoning literature. We will discuss how to efficiently solve the

resulting optimization problem in Section 4.

Given a ground-truth image 𝐼𝐼𝐼 and its quantized or stochastic

approximation𝑄𝑄𝑄 , we denote the (signed) error image by

𝜖𝜖𝜖 =𝑄𝑄𝑄 − 𝐼𝐼𝐼 . (1)

To minimize the error, it is convenient to quantify it as a single

value. A common approach is to take theℒ1,ℒ2, orℒ∞ norm of the

Image Image spectrum Kernel spectrum Product spectrum

𝜖𝜖𝜖w ⋃︀𝜖𝜖𝜖w⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⊙ ⋃︀𝜖𝜖𝜖w⋃︀2

𝜖𝜖𝜖
b

⋃︀𝜖𝜖𝜖
b
⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⋃︀𝑔𝑔𝑔⋃︀2 ⊙ ⋃︀𝜖𝜖𝜖

b
⋃︀2

Fig. 2. Error images 𝜖𝜖𝜖w and 𝜖𝜖𝜖
b
with respective white-noise, ⋃︀𝜖𝜖𝜖w⋃︀2, and blue-

noise, ⋃︀𝜖𝜖𝜖
b
⋃︀2, power spectra. For a low-pass kernel 𝑔𝑔𝑔 modeling the PSF of the

HVS (here a Gaussian with std. dev. 𝜎 = 1), the product of its spectrum
⋃︀𝑔𝑔𝑔⋃︀2 with ⋃︀𝜖𝜖𝜖

b
⋃︀2 has lower magnitude than the product with ⋃︀𝜖𝜖𝜖w⋃︀2. This corre-

sponds to lower perceptual sensitivity to 𝜖𝜖𝜖
b
, even though 𝜖𝜖𝜖w has the same

amplitude as it is obtained by randomly permuting the pixels of 𝜖𝜖𝜖
b
.

image𝜖𝜖𝜖 interpreted as a vector. Such simple metrics are permutation-

invariant, i.e., they account for the magnitudes of individual pixel
errors but not for their distribution over the image. This distribu-

tion is an important factor for the perceived fidelity, since contrast

perception is an inherently spatial characteristic of the HVS (Sec-

tion 2.3). Our model is based on perceptual halftoning metrics that

capture both the magnitude and the distribution of error.

3.1 Motivation
Halftoning metrics model the processing done by the HVS as a

convolution of the error image 𝜖𝜖𝜖 with a kernel 𝑔𝑔𝑔:

𝐸 = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖∏︁2
2
= ∏︁𝑔𝑔𝑔 ⊙ 𝜖𝜖𝜖∏︁2

2
= ∐︀⋃︀𝑔𝑔𝑔⋃︀2, ⋃︀𝜖𝜖𝜖 ⋃︀2̃︀. (2)

The convolution is equivalent to the element-wise product of the

corresponding Fourier spectra𝑔𝑔𝑔 and 𝜖𝜖𝜖 , whose 2-norm in turn equals

the inner product of the power spectra images ⋃︀𝑔𝑔𝑔⋃︀2 and ⋃︀𝜖𝜖𝜖 ⋃︀2. Sullivan
et al. [1991] optimized the error image 𝜖𝜖𝜖 to minimize the error (2)

w.r.t. a kernel 𝑔𝑔𝑔 that approximates the HVS’s modulation transfer

function ⋃︀𝑔𝑔𝑔⋃︀ (MTF) [Daly 1987]. Analoui and Allebach [1992] used

a similar model in the spatial domain with a kernel that approxi-

mates the PSF
1
of the human eye. That kernel is low-pass, and the

optimization naturally yields blue-noise
2
distribution in the error

image [Analoui and Allebach 1992], as we show later in Fig. 5. The

blue-noise distribution can thus be seen as byproduct of the opti-

mization which pushes the spectral components of the error to the

frequencies least visible to the human eye (see Fig. 2).

To better understand the spatial aspects of contrast sensitivity

in the HVS, the MTF is usually modeled over a range of viewing

distances [Daly 1992]. This is done to account for the fact that with

increasing viewer distance, spatial frequencies in the image are

1

The MTF is the magnitude of the Fourier transform of the PSF.

2

The term “blue noise” is often used loosely to refer to any isotropic spectrum with

minimal low-frequency content and no concentrated energy spikes.
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𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 1

Fig. 3. The appearance of blue noise (left images) converges to a constant im-
age faster than white noise (right images) with increasing observer distance,
here emulated via the standard deviation 𝜎 of a Gaussian kernel. We provide
a formal connection between 𝜎 and the viewing distance in Section 6.

projected to higher spatial frequencies onto the retina. These fre-

quencies eventually become invisible, filtered out by the PSF which

expands its corresponding kernel in image space. We recreate this

experiment to see the impact of distance on the image error. In Fig. 3,

we convolve white- and blue-noise distributions with a Gaussian

kernel of increasing standard deviation corresponding to increasing

observer-to-screen distance. The high-frequency blue-noise distribu-

tion reaches a homogeneous state (where the tone appears constant)

faster compared to the all-frequency white noise. This means that

high-frequency error becomes indiscernible at closer viewing dis-

tances, where the HVS ideally has not yet started filtering out actual

image detail which is typically low- to mid-frequency. In Section 6

we discuss how the kernel’s standard deviation encodes the viewing

distance w.r.t. to the screen resolution.

3.2 Our model
In rendering, the value of each pixel 𝑖 is a light-transport integral.

Point-sampling its integrand with a sample set 𝑆 yields a pixel

estimate 𝑄𝑖(𝑆). The signed pixel error is thus a function of the

sample set: 𝜖𝑖(𝑆) = 𝑄𝑖(𝑆)− 𝐼𝑖 , where 𝐼𝑖 is the reference (i.e., ground-
truth) pixel value. The error of the entire image can be written as

𝜖𝜖𝜖(𝑆𝑆𝑆) =𝑄𝑄𝑄(𝑆𝑆𝑆) − 𝐼𝐼𝐼 , (3)

where 𝑆𝑆𝑆 = {𝑆1, . . . , 𝑆𝑁 } is an “image” containing the sample set for

all 𝑁 pixels. With these definitions, we can express the perceptual

error in Eq. (2) for the case of Monte Carlo rendering as a function

of the sample-set image 𝑆𝑆𝑆 , given a kernel 𝑔𝑔𝑔:

𝐸(𝑆𝑆𝑆) = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖(𝑆𝑆𝑆)∏︁2
2
. (4)

Our goal is to minimize the perceptual error (4). We formulate

this task as an optimization problem:

min

𝑆𝑆𝑆∈ΩΩΩ
𝐸(𝑆𝑆𝑆) = min

𝑆𝑆𝑆∈ΩΩΩ
∏︁𝑔𝑔𝑔 ∗ (𝑄𝑄𝑄(𝑆𝑆𝑆) − 𝐼𝐼𝐼)∏︁2

2
. (5)

The minimizing sample-set image 𝑆𝑆𝑆 yields an image estimate𝑄𝑄𝑄(𝑆𝑆𝑆)
that is closest to the reference 𝐼𝐼𝐼 w.r.t. the kernel 𝑔𝑔𝑔. The search space

ΩΩΩ is the set of all possible locations for every sample of every pixel.

The total number of samples in 𝑆𝑆𝑆 is typically bounded by a given

target sampling budget. Practical considerations may also restrict

the search space ΩΩΩ, as we will exemplify in the following section.

Note that the classical MSE metric corresponds to using a zero-

width (i.e., one-pixel) kernel𝑔𝑔𝑔 in Eq. (4). However, the MSE accounts

only for the magnitude of the error 𝜖𝜖𝜖 , while using wider kernels

(such as the PSF) accounts for both magnitude and distribution. Con-

sequently, while the MSE can be minimized by optimizing pixels

independently, minimizing the perceptual error requires coordina-

tion between pixels. In the following section, we devise strategies

for solving this optimization problem.

4 DISCRETE OPTIMIZATION
In our optimization problem (5), the search space for each sample

in every pixel is a high-dimensional unit hypercube. Every point

in this so-called primary sample space maps to a light-transport

path in the scene [Pharr et al. 2016]. Optimizing for the sample-set

image 𝑆𝑆𝑆 thus entails evaluating the contributions𝑄𝑄𝑄(𝑆𝑆𝑆) of all corre-
sponding paths. This evaluation is costly, and for any non-trivial

scene,𝑄𝑄𝑄 is a function with complex shape and many discontinuities.

This precludes us from studying all (uncountably infinite) sample

locations in practice.

To make the problem tractable, we restrict the search in each

pixel to a finite number of (pre-defined) sample sets. We devise

two variants of the resulting discrete optimization problem, which

differ in their definition of the global search space ΩΩΩ. In the first

variant, each pixel has a separate list of sample sets to choose from

(“vertical” search space). The setting is similar to that of (multi-

tone) halftoning [Lau and Arce 2007], which allows us to import

classical optimization techniques from that field, such as iterative

minimization, error diffusion, and mask-based dithering. In the sec-

ond variant, each pixel has one associated sample set, and the search

space comprises permutations of these assignments (“horizontal”

search space). We develop a greedy iterative optimization method

for this second variant.

In contrast to halftoning, in our setting the ground-truth image

𝐼𝐼𝐼—required to compute the error image 𝜖𝜖𝜖 during optimization—is

not readily available. Below we describe our algorithms assuming

the ground truth is available; in Section 5 we will discuss how to

substitute it with a surrogate to make the algorithms practical.

4.1 Vertical search space
Our first variant considers a “vertical” search spacewhere the sample

set for each of the 𝑁 image pixels is one of𝑀 given sets:
3

ΩΩΩ = {𝑆𝑆𝑆 = {𝑆1, . . . , 𝑆𝑁 } ∶ 𝑆𝑖 ∈ {𝑆𝑖,1, . . . , 𝑆𝑖,𝑀}} . (6)

The objective is to find a sample set 𝑆𝑖 for every pixel 𝑖 such that all

resulting pixel estimates together minimize the perceptual error (4).

𝑂1𝑂1

𝑄1,𝑀𝑄1,𝑀

𝑂2𝑂2

𝑄2,1𝑄2,1

𝑂3𝑂3
𝑄3,2𝑄3,2

This is equivalent to directly

optimizing over the 𝑀 pos-

sible estimates 𝑄𝑖,1, . . . ,𝑄𝑖,𝑀

for each pixel, with 𝑄𝑖, 𝑗 =
𝑄𝑖(𝑆𝑖, 𝑗). These estimates can

be obtained by pre-rendering

a stack of𝑀 images𝑄𝑄𝑄 𝑗 = {𝑄1, 𝑗 , . . . ,𝑄𝑁,𝑗}, for 𝑗 = 1..𝑀 . The result-

ing minimization problem reads:

min

𝑂𝑂𝑂 ∶𝑂𝑖∈{𝑄𝑖,1,...,𝑄𝑖,𝑀}
∏︁𝑔𝑔𝑔 ∗ (𝑂𝑂𝑂 − 𝐼𝐼𝐼)∏︁2

2
. (7)

3

For notational simplicity, and without loss of generality, we assume that the number

of candidate sample sets𝑀 is the same for all pixels; in practice can vary per pixel.
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This problem is almost identical to that of multi-tone halftoning.

The difference is that in our setting the “quantization levels”, i.e.,

the pixel estimates, are distributed non-uniformly and vary per

pixel as they are not fixed but are the result of point-sampling a

light-transport integral. This similarity allows us to directly apply

existing optimization techniques from halftoning. We consider three

such methods, which we outline in Alg. 1 and describe next.

Iterative minimization. State-of-the-art halftoning methods attack

the problem (7) directly via greedy iterative minimization [Analoui

and Allebach 1992; Pappas and Neuhoff 1999]. After initializing

every pixel to a random quantization level, we traverse the image in

serpentine order (as is standard practice in halftoning) and for each

pixel choose the level that minimizes the energy. Several full-image

iterations are performed; in our experiments convergence to a local

minimum is achieved within 10–20 iterations.

As a further improvement, the optimization can be terminated

when no pixels are updated within one full iteration, or when the

perceptual-error reduction rate drops below a certain threshold.

Traversing the pixels in random order allows terminating at any

point but converges slightly slower.

Error diffusion. A classical halftoning algorithm, error diffusion

scans the image pixel by pixel, snapping each reference value to the

closest quantization level and distributing the resulting pixel error

to yet-unprocessed nearby pixels according to a given kernel 𝜅𝜅𝜅 . We

use the empirically derived kernel of Floyd and Steinberg [1976]

which has been shown to produce an output that approximately

minimizes Eq. (7) [Hocevar and Niger 2008]. Error diffusion is faster

than iterative minimization but yields less optimal solutions.

Dithering. The fastest halftoning approach quantizes pixel values

using thresholds stored in a pre-computed dither mask (or matrix)

[Spaulding et al. 1997]. For each pixel, the two quantization levels

that tightly envelop the reference value (in terms of brightness) are

found, and one of the two is chosen based on the threshold assigned

to the pixel by the mask.

Dithering can be understood as performing the perceptual error

minimization in two steps. First, an offline optimization encodes the

error distribution optimal for the target kernel 𝑔𝑔𝑔 into a mask. Then,

for a given image, the error magnitude is minimized by restricting

the quantization to the two closest levels per pixel, and the mask-

driven choice between them applies the target distribution of error.

4.2 Horizontal search space
We now describe the second, “horizontal” discrete variant of our

minimization formulation (5). It considers a single sample set 𝑆𝑖
assigned to each of the𝑁 pixels, all represented together as a sample-

set image 𝑆𝑆𝑆 . The search space comprises all possible permutations

Π(𝑆𝑆𝑆) of these assignments:

ΩΩΩ = Π(𝑆𝑆𝑆), with 𝑆𝑆𝑆 = {𝑆1, . . . , 𝑆𝑁 }. (8)

The goal is to find a permutation 𝜋(𝑆𝑆𝑆) that minimizes the perceptual

error (4). The optimization problem (5) thus takes the form

min

𝜋∈Π(𝑆𝑆𝑆)
∏︁𝑔𝑔𝑔 ∗ (𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁2

2
. (9)

Algorithm 1. Three algorithms to (approximately) solve the vertical search
space optimization problem (7). The output is an image𝑂𝑂𝑂 = {𝑂1, . . . ,𝑂𝑁 },
given a reference image 𝐼𝐼𝐼 and a stack of initial image estimates𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 .
Iterative minimization updates pixels repeatedly, for each selecting the
estimate that minimizes the perceptual error (4). Error diffusion quantizes
each pixel to the closest estimate, distributing the error to its neighbors
based on a kernel𝜅𝜅𝜅 . Dithering quantizes each pixel in 𝐼𝐼𝐼 based on thresholds
looked up in a dither mask 𝐵𝐵𝐵 (optimized w.r.t. the kernel 𝑔𝑔𝑔).

1: function IterativeMinimization(𝑔𝑔𝑔, 𝐼𝐼𝐼 ,𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 ,𝑂𝑂𝑂 , 𝑇 )

2: 𝑂𝑂𝑂 = {𝑄
1,rand, . . . ,𝑄𝑁,rand} ← Init each pixel to random estimate

3: for 𝑇 iterations do
4: for pixel 𝑖 = 1..𝑁 do ← E.g., random or serpentine order

5: for estimate 𝑄𝑖, 𝑗 ∈ {𝑄𝑖,1, . . . ,𝑄𝑖,𝑀} do
6: if 𝑂𝑖 == 𝑄𝑖, 𝑗 reduces ∏︁𝑔𝑔𝑔 ∗ (𝑂𝑂𝑂 − 𝐼𝐼𝐼)∏︁22 then
7: 𝑂𝑖 = 𝑄𝑖, 𝑗 ← Update estimate

8: function ErrorDiffusion(𝜅𝜅𝜅, 𝐼𝐼𝐼 ,𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 ,𝑂𝑂𝑂)

9: 𝑂𝑂𝑂 = 𝐼𝐼𝐼 ← Initialize solution to reference

10: for pixel 𝑖 = 1..𝑁 do ← E.g., serpentine order

11: 𝑂
old

𝑖 = 𝑂𝑖

12: 𝑂𝑖 ∈ argmin𝑄𝑖,𝑗
∏︁𝑂old

𝑖 −𝑄𝑖, 𝑗∏︁22
13: 𝜖𝑖 = 𝑂old

𝑖 −𝑂𝑖 Æ Diffuse error 𝜖𝑖 to yet-unprocessed neighbors

14: for unprocessed pixel 𝑘 within support of 𝜅𝜅𝜅 around 𝑖 do
15: 𝑂𝑘 += 𝜖𝑖 ⋅ 𝜅𝑘−𝑖
16: function Dithering(𝐵𝐵𝐵, 𝐼𝐼𝐼 ,𝑄𝑄𝑄1, . . . ,𝑄𝑄𝑄𝑀 ,𝑂𝑂𝑂)

17: for pixel 𝑖 = 1..𝑁 do Æ Find tightest interval (︀𝑄 low

𝑖 ,𝑄
high

𝑖
⌋︀

18: 𝑄
lower

𝑖 = argmax𝑄𝑖,𝑗 ∶ ⋃︀𝑄𝑖,𝑗 ⋃︀≤ ⋃︀𝐼𝑖 ⋃︀ ⋃︀𝑄𝑖, 𝑗 ⋃︀ containing 𝐼𝑖

19: 𝑄
upper

𝑖 = argmin𝑄𝑖,𝑗 ∶ ⋃︀𝑄𝑖,𝑗 ⋃︀> ⋃︀𝐼𝑖 ⋃︀ ⋃︀𝑄𝑖, 𝑗 ⋃︀

20: if ⋃︀𝐼𝑖 ⋃︀ − ⋃︀𝑄 lower

𝑖 ⋃︀ < 𝐵𝑖 ⋅ (⋃︀𝑄upper

𝑖 ⋃︀ − ⋃︀𝑄 low

𝑖 ⋃︀) then
21: 𝑂𝑖 = 𝑄 lower

𝑖 ÄSet𝑂𝑖 to𝑄
lower

𝑖 or𝑄
upper

𝑖
using threshold 𝐵𝑖

22: else
23: 𝑂𝑖 = 𝑄upper

𝑖

We can explore the permutation spaceΠ(𝑆𝑆𝑆) by swapping the sample-

set assignments between pixels. The minimization requires

updating the image estimate𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) for each
permutation 𝜋(𝑆𝑆𝑆), i.e., after every swap. Such

updates are costly as they involve re-sampling

both pixels in each of potentially millions of

swaps. We need to eliminate these extra ren-

dering invocations during the optimization to

make it practical. To that end, we observe that

for pixels solving similar light-transport integrals, swapping their

sample sets gives a similar result to swapping their estimates. We

therefore restrict the search space to permutations that can be gen-

erated through swaps between such (similar) pixels. This enables an

efficient optimization scheme that directly swaps the pixel estimates

of an initial rendering𝑄𝑄𝑄(𝑆𝑆𝑆).

Error decomposition. Formally, we express the estimate produced

by a sample-set permutation in terms of permuting the pixels of the

initial rendering:𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) = 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) +ΔΔΔ(𝜋). The error ΔΔΔ is zero

when the swapped pixels solve the same integral. Substituting into

Eq. (9), we can approximate the perceptual error by (see Appendix A)
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𝐸(𝜋) = ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼 + ΔΔΔ(𝜋))∏︁2
2

(10a)

≈ ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁2
2
+ ∏︁𝑔𝑔𝑔∏︁2

1∑
𝑖

𝑑(𝑖, 𝜋(𝑖)) = 𝐸𝑑(𝜋), (10b)

where we write the error 𝐸(𝜋) as a function of 𝜋 only, to emphasize

that everything else is fixed during the optimization. In the approxi-

mation 𝐸𝑑 , the term 𝑑(𝑖, 𝜋(𝑖)) measures the dissimilarity between

pixel 𝑖 and the pixel 𝜋(𝑖) it is relocated to by the permutation. The

purpose of this metric is to predict how different we expect the

result of re-estimating the pixels after swapping their sample sets

to be compared to simply swapping their initial estimates. It can be

constructed based on knowledge or assumptions about the image.

Local similarity assumption. Our implementation uses a simple

binary dissimilarity function that returns zero when 𝑖 and 𝜋(𝑖) are
within some distance 𝑟 and infinity otherwise. We set 𝑟 ∈ (︀1, 3⌋︀; it
should ideally be locally adapted to the image smoothness. This

allows us to restrict the search space Π(𝑆𝑆𝑆) only to permutations that

swap adjacent pixels where it is more likely that ΔΔΔ is small. More

elaborate heuristics could better account for pixel (dis)similarity.

Iterative minimization. We devise a greedy iterative minimization

scheme for this horizontal formulation, similar to the one in Alg. 1.

Given an initial image estimate𝑄𝑄𝑄(𝑆𝑆𝑆), produced by randomly assign-

ing a sample set to every pixel, our algorithm goes over all pixels

and for each considers swaps within a (2𝑅 + 1)2 neighborhood;

we use 𝑅 = 1. The swap that brings the largest reduction in the

perceptual error 𝐸𝑑 is accepted. Algorithm 2 provides pseudocode.

In our experiments we run 𝑇 = 10 full-image iterations. As before,

the algorithm could be terminated based on the swap reduction rate

or the error reduction rate. We explore additional optimizations in

supplemental Section 3.

The parameter 𝑅 balances between the cost of one iteration and

the amount of exploration it can do. Note that this parameter is

different from the maximal relocation distance 𝑟 in the dissimilarity

metric, with 𝑅 ≤ 𝑟 .
Due to the pixel (dis)similarity assumptions, the optimization

can produce some mispredictions, i.e., it may swap the estimates of

pixels for which swapping the sample sets produces a significantly

different result. Thus the image 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) cannot be used directly

as a final estimate. We therefore re-render the image using the

optimized permutation 𝜋 to obtain the final estimate𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)).

4.3 Discussion
Search space. We discretize the search space ΩΩΩ to make the opti-

mization problem (5) tractable. To make it truly practical, it is also

necessary to avoid repeated image estimation (i.e.,𝑄𝑄𝑄(𝑆𝑆𝑆) evaluation)
during the search for the solution 𝑆𝑆𝑆 . Our vertical (7) and horizon-

tal (9) optimization variants are formulated specifically with this

goal in mind. All methods in Algs. 1 and 2 operate on pre-generated

image estimates that constitute the solution search space.

Our vertical formulation takes a collection of𝑀 input estimates

{𝑄𝑖, 𝑗 = 𝑄𝑖(𝑆𝑖, 𝑗)}𝑀𝑗=1 for every pixel 𝑖 , one for each sample set 𝑆𝑖, 𝑗 .

Noting that 𝑄𝑖, 𝑗 are MC estimates of the true pixel value, this col-

lection can be cheaply expanded to a size as large as 2
𝑀 − 1 by

Algorithm 2. Given a convolution kernel 𝑔𝑔𝑔, a reference image 𝐼𝐼𝐼 , an initial
sample-set assignment 𝑆𝑆𝑆 , and an image estimate 𝑄𝑄𝑄(𝑆𝑆𝑆) computed with
that assignment, our greedy algorithm iteratively swaps sample-set assign-
ments between neighboring pixels to minimize the perceptual error 𝐸𝑑 (10b),
producing a permutation 𝜋 of the initial assignment.

1: function IterativeMinimization(𝑔𝑔𝑔, 𝐼𝐼𝐼 , 𝑆𝑆𝑆 ,𝑄𝑄𝑄(𝑆𝑆𝑆), 𝑇 , 𝑅, 𝜋 )
2: 𝜋 = identity permutation ← Initialize solution permutation

3: for 𝑇 iterations do
4: for pixel 𝑖 = 1..𝑁 do ← E.g., random or serpentine order

5: 𝜋
′ = 𝜋 Æ Find best pixel in neighborhood to swap with

6: for pixel 𝑗 in (2𝑅+1)2 neighborhood around 𝑖 do
7: if 𝐸𝑑(𝜋𝑖⇆ 𝑗(𝑆𝑆𝑆)) < 𝐸𝑑(𝜋 ′(𝑆𝑆𝑆)) then ← Eq. (10b)

8: 𝜋
′ = 𝜋𝑖⇆𝑗 ← Accept swap as current best

9: 𝜋 = 𝜋 ′

taking the average of the estimates in each of its subsets (excluding

the empty subset). In practice only a fraction of these subsets can

be used, since the size of the power set grows exponentially with

𝑀 . It may seem that this approach ends up wastefully throwing

away most input estimates. But note that these estimates actively

participate in the optimization and provide the space of possible

solutions. Carefully selecting a subset per pixel can yield a higher-

fidelity result than blindly averaging all available estimates, as we

will show repeatedly in Section 7.

In contrast, our horizontal formulation builds a search space given

just a single input estimate 𝑄𝑖 per pixel. We consciously restrict

the space to permutations between nearby pixels, so as to leverage

local pixel similarity and avoid repeated pixel evaluation during

optimization. The disadvantage of this approach is that it requires re-

rendering the image after optimization, with uncertain results (due

to mispredictions) that can lead to local degradation of image quality.

Mispredictions can be reduced by exploiting knowledge about the

rendering function 𝑄𝑄𝑄(𝑆𝑆𝑆), e.g., through depth, normal, or texture

buffers; we explore this in supplemental Section 2. Additionally,

while methods like iterative minimization (Alg. 2) and dithering

(Section 5.2) can be adapted to this search space, reformulating other

halftoning algorithms such as error diffusion is non-trivial.

A hybrid formulation is also conceivable, taking a single input

estimate per pixel (like horizontal methods) and considering a sepa-

rate (vertical) search space for each pixel constructed by borrowing

estimates from neighboring pixels. Such an approach could benefit

from advanced halftoning optimization methods, but could also

suffer from mispredictions and require re-rendering. We leave the

exploration of this approach to future work.

Finally, it is worth noting that discretization is not the only route

to practicality. Equation (5) can be optimized on the continuous

space ΩΩΩ if some cheap-to-evaluate proxy for the rendering function

is available. Such a continuous approximation may be analytical

(based on prior knowledge or assumptions) or obtained by recon-

structing a point-wise evaluation. However, continuous-space opti-

mization can be difficult in high dimensions (e.g., number of light

bounces) where non-linearities and non-convexity are exacerbated.

Optimization strategy. Another important choice is the optimiza-

tion method. For the vertical formulation, iterative minimization
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provides the best flexibility and quality but is the most computa-

tionally expensive. Error diffusion and dithering are faster but only

approximately solve Eq. (7).

One difference between classical halftoning and our vertical set-

ting is that quantization levels are non-uniformly distributed and

differ between pixels. This further increases the gap in quality be-

tween the image-adaptive iterative minimization and error diffu-

sion (which can correct for these differences) and the non-adaptive

dithering, compared to the halftoning setting. The main advantage

of dithering is that it involves the kernel 𝑔𝑔𝑔 explicitly, while the

error-diffusion kernel 𝜅𝜅𝜅 cannot be related directly to 𝑔𝑔𝑔.

5 PRACTICAL APPLICATION
We now turn to the practical use of our error optimization frame-

work. In both our discrete formulations from Section 4, the search

space is determined by a given collection of sample sets 𝑆𝑖, 𝑗 for

every pixel 𝑖 , with 𝑗 = 1...𝑀 (in the horizontal setting𝑀 = 1). The
optimization is then driven by the corresponding estimates𝑄𝑖, 𝑗 . We

consider two ways to obtain these estimates, leading to different

practical trade-offs: (1) direct evaluation of the samples by rendering

a given scene and (2) using a proxy for the rendering function. We

show how prior works correspond to using either approach within

our framework, which helps expose their implicit assumptions.

5.1 Surrogate for ground truth
The goal of our optimization is to perceptually match an image

estimate to the ground truth 𝐼𝐼𝐼 as closely as possible. Unfortunately,

the ground truth is unknown in our setting, unlike in halftoning.

The best we can do is substitute it with a surrogate image 𝐼
′𝐼 ′𝐼 ′. Such

an image can be obtained either from available pixel estimates or

by making assumptions about the ground truth. We will discuss

specific approaches in the following, but it is already worth noting

that all existing error-distribution methods rely on such a surrogate,

whether explicitly or implicitly. And since the surrogate guides the

optimization, its fidelity directly impacts the fidelity of the output.

5.2 A-posteriori optimization
Given a scene and a viewpoint, initial pixel estimates can be obtained

by invoking the renderer with the input samples: 𝑄𝑖, 𝑗 = 𝑄𝑖(𝑆𝑖, 𝑗).
A surrogate can then be constructed from those estimates; in our

implementationwe denoise the estimate-average image (Section 7.1).

Having the estimates and the surrogate, we can run any of the

methods in Algs. 1 and 2. Vertical algorithms directly output an

image𝑂𝑂𝑂 ; horizontal optimization yields a sample-set image 𝑆𝑆𝑆 that

requires an additional rendering invocation:𝑂𝑂𝑂 =𝑄𝑄𝑄(𝑆𝑆𝑆).
This general approach of utilizing sampled image information

was coined a-posteriori optimization by Heitz and Belcour [2019];

they proposed two such methods. Their histogram method operates

in a vertical setting, choosing one of the (sorted) estimates for each

pixel based on the respective value in a given blue-noise dither mask.

Such sampling corresponds to using an implicit surrogate that is

the median estimate for every pixel, which is what the mean of the

dithermaskmaps to. Importantly, any one of the estimates for a pixel

can be selected, whereas in classical dithering the choice is between

the two quantization levels that tightly envelop the reference value

(Section 4.1) [Spaulding et al. 1997]. Such selection can yield large

error, especially for pixels whose corresponding mask values deviate

strongly from the mask mean. This produces image fireflies that do

not appear if simple estimate averages are taken instead (see Fig. 6).

The permutation method of Heitz and Belcour [2019] operates in

a horizontal setting. Given an image estimate, it finds pixel permu-

tations within small tiles that minimize the distance between the

estimates and the values of a target blue-noise mask. This matching

transfers the mask’s distribution to the image signal rather than

to its error. The two are equivalent only when the signal within

each tile is constant. The implicit surrogate in this method is thus

a tile-wise constant image (shown more formally in supplemental

Section 5). In our framework the use of a surrogate is explicit, which

enables full control over the quality of the error distribution.

5.3 A-priori optimization
Optimizing perceptual error is possible even in the absence of in-

formation about a specific image. In our framework, the goal of

such an a-priori approach (as coined by Heitz and Belcour [2019]) is

to compute a sample-set image 𝑆𝑆𝑆 by using surrogates for both the

ground-truth image 𝐼𝐼𝐼 and the rendering function𝑄𝑄𝑄(𝑆𝑆𝑆), constructed
based on smoothness assumptions. The samples 𝑆𝑆𝑆 can then produce

a high-fidelity estimate of any image that meets those assumptions.

Lacking prior knowledge, one could postulate that every pixel 𝑖

has the same rendering function:𝑄𝑖(⋅)=𝑄(⋅); the image surrogate 𝐼
′𝐼 ′𝐼 ′

is thus constant. While in practice this assumption (approximately)

holds only locally, the optimization kernel𝑔𝑔𝑔 is also expected to have

compact support. The shape of 𝑄 can be assumed to be (piecewise)

smooth and approximable by a cheap analytical function 𝑄
′
.

With the above surrogates in place, we can run our algorithms

to optimize a sample-set image 𝑆𝑆𝑆 . The constant-image assumption

makes horizontal algorithms well-suited for this setting as it makes

the swapping-error term ΔΔΔ in Eq. (10a) vanish, simplifying the per-

ceptual error to 𝐸(𝜋(𝑆𝑆𝑆)) = ∏︁𝑔𝑔𝑔 ∗ 𝜋(𝜖𝜖𝜖(𝑆𝑆𝑆))∏︁2
2
. This enables the opti-

mization to consider swaps between any two pixels in the error

image 𝜖𝜖𝜖(𝑆𝑆𝑆). That image can be quickly rendered in advance, by in-

voking the render-function surrogate 𝑄
′
with the input sample-set

image.

Georgiev and Fajardo [2016] take a similar approach, with swap-

ping based on simulated annealing. Their empirically motivated

optimization energy uses an explicit (Gaussian) kernel, but instead

of computing an error image through a rendering surrogate, it pos-

tulates that the distance between two sample sets is representative

of the difference between their corresponding pixel errors. Such

a smoothness assumption holds for bi-Lipschitz-continuous func-

tions. Their energy can thus be understood to compactly encode

properties of a class of rendering functions.

Heitz et al. [2019] adopt the approach of Georgiev and Fajardo

[2016], but their energy function replaces the distance between

sample sets by the difference between their corresponding pixel

errors. The errors are computed using an explicit render-function

surrogate. They optimize for a large number of simple surrogates

simultaneously, and leverage a compact representation of Sobol

sequences to also support progressive sampling. We relate these two

prior works to ours more formally in supplemental Section 6, also
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showing how our perceptual error formulation can be incorporated

into the method of Heitz et al. [2019].

The approach of Ahmed and Wonka [2020] performs on-the-

fly scrambling of a Sobol sequence applied to the entire image.

Image pixels are visited in Morton Z-order modified to breaks its

regularity. The resulting sampler diffuses Monte Carlo error over

hierarchically nested blocks of pixels giving a perceptually pleasing

error distribution. However, the algorithmic nature of this approach

introduces more implicit assumptions than prior works, making it

difficult to analyze.

Our theoretical formulation and optimization methods enable the

construction of a-priori sampling masks in a principled way. For hor-

izontal optimization, we recommend using our iterative algorithm

(Alg. 2) which can bring significant performance improvement over

simulated annealing; such speed-up was reported by Analoui and

Allebach [1992] for dither-mask construction. Vertical optimization

is an interesting alternative, where for each pixel one of several

sample sets would be chosen; this would allow for varying the

sample count per pixel. Note that the ranking-key optimization

for progressive sampling of Heitz et al. [2019] is a form of vertical

optimization.

5.4 Discussion
Our formulation expresses a-priori and a-posteriori optimization un-

der a common framework that unifies existing methods. These two

approaches comewith different trade-offs. A-posteriori optimization

utilizes sampled image information, and in a vertical setting requires

no assumptions except for what is necessary for surrogate construc-

tion. It thus has potential to achieve high output fidelity, especially

on scenes with complex lighting as it is oblivious to the shape and

dimensionality of the rendering function, as first demonstrated by

Heitz and Belcour [2019]. However, it requires pre-sampling (also

post-sampling in the horizontal setting), and the optimization is

sensitive to the surrogate quality.

Making aggressive assumptions allows a-priori optimization to

be performed offline once and the produced samples 𝑆𝑆𝑆 to be subse-

quently used to render any image. This approach resembles classical

sample stratification where the goal is also to optimize sample dis-

tributions w.r.t. some smoothness expectations. In fact, our a-priori

formulation subsumes the per-pixel stratification problem, since

the perceptual error is minimized when the error image 𝜖𝜖𝜖(𝑆𝑆𝑆) has
both low magnitude and visually pleasing distribution. Two main

factors limit the potential of a-priori optimization, especially on

scenes with non-uniform multi-bounce lighting. One is the general

difficulty of optimizing sample distributions in high-dimensional

spaces. The other is that in such scenes the complex shape of the

rendering function, both in screen and sample space, can easily

break smoothness assumptions and cause high (perceptual) error.

To test the capabilities of our formulation, in the following we

focus on the a-posteriori approach. In the supplemental document

we explore a-priori optimization based on our framework. The two

approaches can also be combined, e.g., by seeding a-posteriori opti-

mization with a-priori-optimized samples whose good initial guess

can improve the quality and convergence speed.

6 EXTENSIONS
Our perceptual error formulation (4) approximates the effect of the

HVS PSF through kernel convolution. In this section we analyze the

relationship between kernel and viewing distance, as well as the

impact of the kernel shape on the error distribution. We also present

extensions that account for the HVS non-linearities in handling

tone and color.

Kernels and viewing distance. As discussed in Section 3.1, the PSF

is usually modelled over a range of viewing distances. The effect of

the PSF depends on the frequencies of the viewed signal and the

distance from which it is viewed. Pappas and Neuhoff [1999] have

found that the Gaussian is a good approximation to the PSF in the

context of halftoning. They derived its standard deviation 𝜎 in terms

of the minimum viewing distance for a given screen resolution:

𝜎 = 0.00954

𝜏
, where 𝜏 = 180

𝜋
2 arctan( 1

2𝑅𝐷
) . (11)

Here 𝜏 is the visual angle between the centers of two neighboring

pixels (in degrees) for screen resolution 𝑅 (in 1⇑inches) and viewing
distance 𝐷 (in inches). The minimum viewing distance for a given

standard deviation and resolution can be contained via the inverse

formula:𝐷 = (2𝑅 tan ( 𝜋
180

0.00954
2𝜎

))−1. Larger𝜎 values correspond to

larger observer distances; we demonstrate the effect of that in Fig. 3

where the images become increasingly blurrier. In Fig. 4a, we com-

pare that Gaussian kernel to two well-established PSF models from

the halftoning literature [Näsänen 1984; González et al. 2006]. We

have found the differences between all three to be negligible; we

use the cheaper to evaluate Gaussian in all our experiments.

Decoupling the viewing distances. Being based on the perceptual

models of the HVS [Sullivan et al. 1991; Analoui and Allebach 1992],

our formulation (4) assumes that the estimate𝑄𝑄𝑄 and the reference 𝐼𝐼𝐼

are viewed from the same (range of) distance(s). The two distances

can be decoupled by applying different kernels to𝑄𝑄𝑄 and 𝐼𝐼𝐼 :

𝐸 = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2
2
. (12)

Minimizing this errormakes𝑄𝑄𝑄 appear from some distance𝐷𝑔𝑔𝑔 similar

to 𝐼𝐼𝐼 seen from a different distance 𝐷ℎℎℎ . The special case of using a

Kronecker delta kernel ℎℎℎ = 𝛿𝛿𝛿 , i.e., with the reference 𝐼𝐼𝐼 seen from

up close, yields 𝐸 = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄 − 𝐼𝐼𝐼∏︁2
2
. This has been shown to have an

edge enhancing effect [Anastassiou 1989; Pappas and Neuhoff 1999]

which we show in Fig. 4b. We use ℎℎℎ = 𝛿𝛿𝛿 in all our experiments.

Tone mapping. Considering that the optimized image will be

viewed on media with limited dynamic range (e.g., screen or paper),

we can incorporate a tone-mapping operator 𝒯 into the perceptual

error (4):

𝐸 = ∏︁𝑔𝑔𝑔 ∗ 𝜖𝜖𝜖𝒯 ∏︁22 = ∏︁𝑔𝑔𝑔 ∗ (𝒯 (𝑄𝑄𝑄) − 𝒯 (𝐼𝐼𝐼))∏︁22 . (13)

Doing this also bounds the per-pixel error 𝜖𝜖𝜖𝒯 = 𝒯 (𝑄𝑄𝑄) − 𝒯 (𝐼𝐼𝐼),
suppressing outliers and making the optimization more robust in

scenes with high dynamic range. We illustrate this improvement in

Fig. 4c, where an ACES [Arrighetti 2017] tone-mapping operator

is applied to the optimized image. Optimizing w.r.t. the original

perceptual error (4) yields a noisy and overly dark image compared

to the tone-mapped ground truth. Accounting for tone mapping in

the optimization through Eq. (13) yields a more faithful result.
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[Näsänen 1984][Näsänen 1984] [González et al. 2006][González et al. 2006]

Our kernelOur kernel

ℎℎℎ = 𝑔𝑔𝑔ℎℎℎ = 𝑔𝑔𝑔 ℎℎℎ = 𝛿𝛿𝛿ℎℎℎ = 𝛿𝛿𝛿 Linear errorLinear error Tone-mapped errorTone-mapped error

Ground truthGround truth

Grayscale errorGrayscale error Color errorColor error

Ground truthGround truth

(a) Kernel comparison (b) Kernel sharpening effect (c) Tone mapping (ACES) (d) Color handling

Fig. 4. (a) Our binomial Gaussian approximation𝑔𝑔𝑔 (3×3 pixels,𝜎 =
⌈︂
2⇑𝜋 ) performs on par with state-of-the-art halftoning kernels. (b) Setting the reference-image

kernelℎℎℎ in Eq. (12) to a zero-width 𝛿𝛿𝛿 kernel sharpens the output. (c) Incorporating tone mapping via Eq. (13). (d) Incorporating color via Eq. (14).

Input (white noise) Low-pass (blue noise) Band-stop (green noise) High-pass (red noise) Band-pass (violet noise) Low-pass anisotropic Spatially varying

Fig. 5. Our formulation (5) allows optimizing the error distribution of an imagew.r.t. arbitrary kernels. Herewe adapt our horizontal iterativeminimization (Alg. 2)
to directly swap the pixels of a white-noise input image. Insets show the power spectra of the target kernels (top left) and the optimized images (bottom right).

Color handling. While the HVS reacts more strongly to luminance

than color, ignoring chromaticity entirely (e.g., by computing the

error image 𝜖𝜖𝜖 from per-pixel luminances) can have a negative effect

on the distribution of color noise in the image. To that end, we can

penalize the perceptual error of each color channel 𝑐 ∈ 𝐶 separately:

𝐸 = ∑
𝑐 ∈𝐶

𝜆𝑐∏︁𝑔𝑔𝑔𝑐 ∗ (𝑄𝑄𝑄𝑐 − 𝐼𝐼𝐼𝑐)∏︁22 , (14)

where 𝜆𝑐 is a per-channel weight. In our experiments, we use an

RGB space𝐶 = {r, g, b}, set 𝜆𝑐 = 1, and use the same kernel𝑔𝑔𝑔𝑐 = 𝑔𝑔𝑔 for
every channel. Figure 4d shows the improvement in color noise over

using greyscale perceptual error. Depending on the color space, the

per-channel kernels may differ (e.g., YCbCr) [Sullivan et al. 1991].

As an alternative, one could decouple the channels from the input

estimates and optimize each channel separately, assembling the

results into a color image. In a vertical setting, this decoupling

extends the optimization search space size from𝑀 to𝑀
⋃︀𝐶 ⋃︀

.

Kernel shape impact. To test the robustness of our framework, we

analyze kernels with spectral characteristics other than isotropic

blue-noise in Fig. 5. We run our iterative pixel-swapping algorithm

(Alg. 2) to optimize the shape of a white-noise input, which pro-

duces a spectral distribution inverse to that of the target kernel. The

rightmost image in the figure shows the result of using a spatially

varying kernel that is a convex combination between a low-pass

Gaussian and a high-pass anisotropic kernel, with the interpolation

parameter varying horizontally across the image. Our algorithm

can adapt the noise shape well.

7 RESULTS
Wenowpresent empirical validation of our error optimization frame-

work in the a-posteriori setting described in Section 5.2. We render

static images and animations of several scenes, comparing our algo-

rithms to those of Heitz and Belcour [2019].

7.1 Setup
Perceptual error model. We build a perceptual model by combin-

ing all extensions from Section 6. Our estimate-image kernel 𝑔𝑔𝑔 is a

binomial approximation of a Gaussian [Lindeberg 1990]. For per-

formance reasons and to allow smaller viewing distances we use a

3×3-pixel kernel with standard deviation 𝜎 =
⌈︂
2⇑𝜋 (see Fig. 4a).

Plugging this 𝜎 value into the inverse of Eq. (11), the correspond-

ing minimum viewing distance is 𝐷 = 4792⇑𝑅 inches for a screen

resolution of 𝑅 dpi (e.g., 16 inches at 300 dpi). We recommend view-

ing from a larger distance, to reduce the effect of our 3×3 kernel
discretization. We use a Dirac reference-image kernel: ℎℎℎ = 𝛿𝛿𝛿 , and
incorporate a simple tone-mapping operator 𝒯 that clamps pixel

values to (︀0, 1⌋︀. The final error model reads:

𝐸 = ∑
𝑐 ∈{r,g,b}

∏︁𝑔𝑔𝑔 ∗ 𝒯 (𝑄𝑄𝑄𝑐) −𝛿𝛿𝛿 ∗ 𝒯 (𝐼 ′𝐼 ′𝐼 ′𝑐)∏︁22, (15)

where 𝐼
′𝐼 ′𝐼 ′ is the surrogate image whose construction we describe

below. For dithering we convert RGB colors to luminance, which

reduces the number of components in the error (15) to one.

Methods. We compare our four methods from Algs. 1 and 2 to

the histogram and permutation of Heitz and Belcour [2019]. For our

vertical and horizontal iterative minimizations we set the maximum

iteration count to 100 and 10 respectively. For error diffusion we
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use the kernel of Floyd and Steinberg [1976] and for dithering we

use a void-and-cluster mask [Ulichney 1993]. For our horizontal

iterative minimization we use a search radius 𝑅 = 1 and allow pixels

to travel within a disk of radius 𝑟 = 1 from their original location in

the dissimilarity metric. For the permutation method of Heitz and

Belcour [2019] we obtained best results with tile size 8×8. (Our 𝑟 = 1
approximately corresponds to their tile size 3×3.)

Rendering. All scenes were rendered with PBRT [Pharr et al. 2016]

using unidirectional or bidirectional path tracing. None of the meth-

ods depend on the sampling dimensionality, though we set the

maximum path depth to 5 for all scenes to maintain reasonable ren-

dering times. The ground-truth images have been generated using

a Sobol sampler with at least 1024 samples per pixel (spp); for all

test renders we use a random sampler. To facilitate numerical-error

comparisons between the different methods, we trace the primary

rays through the pixel centers.

Surrogate construction. To build a surrogate image for our meth-

ods, we filter the per-pixel averaged input estimates using Intel Open

Image Denoise [Intel 2018] which also leverages surface-normal and

albedo buffers, taking about 0.5 sec for a 512×512 image. Recall that

the methods of Heitz and Belcour [2019] utilize implicit surrogates.

Image-quality metrics. We evaluate the quality of some of our re-

sults using the HDR-VDP-2 perceptual metric [Mantiuk et al. 2011],

with parameters matching our binomial kernel. We compute error-

detection probability maps which indicate the likelihood for a hu-

man observer to notice a difference from the ground truth.

Additionally, we analyze the local blue-noise quality of the error

image 𝜖𝜖𝜖 = 𝒯 (𝑄𝑄𝑄) − 𝒯 (𝐼𝐼𝐼). We split the image into tiles of 32×32
pixels and compute the Fourier power spectrum of each tile. For

visualization purposes, we apply a standard logarithmic transform

𝑐 ln(1 + ⋃︀𝜖 ⋃︀) to every resulting pixel value 𝜖 and compute the nor-

malization factor 𝑐 per tile so that the maximum final RGB value

within the tile is (1, 1, 1). Note that the error image 𝜖𝜖𝜖 is computed

w.r.t. the ground truth 𝐼𝐼𝐼 and not the surrogate, which quantifies

the blue-noise distribution objectively. The supplemental material

contains images of the tiled power spectra for all experiments.

We compare images quantitatively via traditional MSE as well

as a metric derived from our perceptual error formulation. Our

perceptual MSE (pMSE) evaluates the error (15) of an estimate image

w.r.t. the ground truth, normalized by the number of pixels 𝑁 and

channels 𝐶 : pMSE = 𝐸
𝑁 ⋅𝐶 . It generalizes the MSE with a perceptual,

i.e., non-delta, kernel 𝑔𝑔𝑔. Table 1 summarizes the results.

7.2 Rendering comparisons
All methods. Figure 6 shows an equal-sample comparison of all

methods. Vertical methods select one of the 4 input samples per

pixel; horizontal methods are fed a 2-spp average for every pixel, and

another 2 spp are used to render the final image after optimization.

Our methods consistently perform best visually, with the vertical

iterative minimization achieving the lowest perceptual error, as cor-

roborated by the HDR-VDP-2 detection maps. Error diffusion is not

far behind in quality and is the fastest of all methods along with

dithering. The latter is similar to Heitz and Belcour’s histogram

method but yields a notably better result thanks to using a superior

surrogate and performing the thresholding as in the classical halfton-

ing setting (see Section 5.2). Horizontal methods perform worse due

to noisier input data (half spp) and worse surrogates derived from

it, and also mispredictions (which necessitate re-rendering). Ours

still uses a better surrogate than Heitz and Belcour’s permutation

and is also able to better fit to it. Notice the low fidelity of the 4-spp

average image compared to our vertical methods’, even though the

latter retain only one of the four input samples for every pixel.

Vertical methods. In Fig. 7 we compare our vertical iterative min-

imization to the histogram sampling of Heitz and Belcour [2019].

Both select one of several input samples (i.e., estimates) for each

pixel. Our method produces a notably better result even when given

16× fewer samples to choose from. The perceptual error of his-

togram sampling does not vanish with increasing sample count. It

dithers pixel intensity rather than pixel error, thus more samples

help improve the intensity distribution but not the error magnitude.

Figure 1 shows our most capable method: vertical iterative mini-

mization with search space extended to the power set of the input

samples (with size 2
4 − 1 = 15 for 4 input spp; see Section 4.3). We

compare surrogate-driven optimization against the best-case result—

optimization w.r.t. the ground truth. Both achieve high fidelity, with

little difference between them and with pronounced local blue-noise

error distribution corroborated by the tiled power spectra.

Horizontal methods & animation. For rendering static images,

horizontal methods are at a disadvantage compared to vertical ones

due to the required post-optimization re-rendering. As Heitz and

Belcour [2019] note, in an animation setting this sampling overhead

can be mitigated by reusing the result of one frame as the initial

estimate for the next. In Fig. 8 we compare their permutationmethod

to our horizontal iterative minimization. For theirs we shift a void-

and-cluster mask in screen space per frame and apply retargeting,

and for ours we traverse the image pixels in different random order.

We intentionally keep the scenes static to test the methods’ best-case

abilities to improve the error distribution over frames.

Starting from a random initial estimate, our method can benefit

from a progressively improving surrogate that helps fine-tune the er-

ror distribution via localized pixel swaps. The permutation method

operates in greyscale within static non-overlapping tiles. This pre-

vents it from making significant progress after the first frame. While

mispredictions cause local deviations from blue noise in both re-

sults, these are stronger in the permutation method’s. This is evident

when comparing the corresponding prediction images—the results

of optimization right before re-rendering. The permutation’s retar-

geting pass breaks the blocky image structure caused by tile-based

optimization but increases the number of mispredictions.

The supplemental video shows animations with all methods,

where vertical ones are fed a new random estimate per frame. Even

without accumulating information over time, these consistently beat

the two horizontal methods. The latter suffer from mispredictions

under fast motion and perform similarly to one another, though ours

remains superior in the presence of temporal smoothness. Mispredic-

tions could be eliminated by optimizing frames independently and

splitting the sampling budget into optimization and re-rendering

halves (as in Fig. 6), though at the cost of reduced sampling quality.
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Fig. 6. Comparison of our algorithms against the permutation and histogram methods of Heitz and Belcour [2019] with equal total sampling cost of 4 spp.
Bottom row shows HDR-VPD-2 error-detection maps (blue is better, i.e., lower detection probability). The baseline 1-spp and 4-spp images exhibit large
perceptual error, while our vertical iterative minimization achieves highest fidelity. Error diffusion produces similar quality. Dithering is as fast but shows
smaller improvement over the baselines, yet significantly outperforms the similar histogram method. Our horizontal iterative optimization does better than
the permutation method. Our methods also reduce MSE compared to the 4-spp baseline, even though they do not focus solely on per-pixel error (see Table 1).
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Fig. 7. With a search space of only 4 spp, our vertical iterative minimization outperforms histogram sampling [Heitz and Belcour 2019] with 16× more input
samples. Please zoom in to fully appreciate the differences; the full-size images are included in the supplemental material.
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Fig. 8. Comparison of our horizontal iterative minimization against the permutation method of Heitz and Belcour [2019] (with retargeting) on 16-frame
sequences of static scenes rendered at 4 spp. Our method does a better job at improving the error distribution frame-to-frame.

Additional comparisons. Figure 9 shows additional results from
our horizontal and vertical minimization and error diffusion. We

compare these to the permutation method of Heitz and Belcour

[2019] which we found to perform better than their histogram ap-

proach on static scenes at equal sampling rates. For the horizontal

methods we show the results after 16 iterations. Our methods again

yield lower error, subjectively and numerically (see Tables 1 and 2).

8 DISCUSSION

8.1 Bias towards surrogate
While ultimately we want to optimize w.r.t. the ground-truth image,

in practice we have to rely on a surrogate. In our experiments we

use reasonably high-quality surrogates, shown in Fig. 12, to best

demonstrate the capabilities of our framework. But when using

a surrogate of low quality, fitting too closely to it can produce an

estimate with artifacts. In such cases less aggressive fittingmay yield

lower perceptual error. To explore the trade-off, in Appendix B we

augment the perceptual error with a term that penalizes deviations

from the initial estimate𝑄𝑄𝑄
init

(which case of vertical optimization

is obtained by averaging the input per-pixel estimates):

𝐸𝒞 = (1 − 𝒞)∏︁𝑔𝑔𝑔∏︁21∏︁𝑄𝑄𝑄 −𝑄𝑄𝑄 init
∏︁2
2
+ 𝒞 𝐸. (16)

The parameter 𝒞 ∈ (︀0, 1⌋︀ encodes our confidence in the surrogate

quality. Setting 𝒞 = 1 reverts to the original formulation (15), while

optimizing with 𝒞 = 0 yields the initial image estimate𝑄𝑄𝑄
init

. Opti-

mizing w.r.t. this energy can also be interpreted as projecting the

surrogate onto the space of Monte Carlo estimates inΩΩΩ, with control
over the fitting power of the projection via 𝒞.
In Fig. 10, we plug the extended error formulation (16) into our

vertical iterative minimization. The results indicate that the visually

best result is achieved for different values of 𝒞 depending on the

surrogate quality. Specifically, when optimizing w.r.t. the ground

truth, the fitting should be most aggressive: 𝒞 = 1. Conversely, if
the surrogate contains structural artifacts, the optimization should

be made less biased to it, e.g., by setting 𝒞 = 0.5. Other ways to

control this bias are using a more restricted search space (e.g., non-

power-set) and capping the number of minimization iterations of

our methods. Note that the methods of Heitz and Belcour [2019]

rely on implicit surrogates and energies and thus provide no control

over this trade-off. We have found that their permutation method

generally avoids tiling artifacts induced by their piecewise constant

surrogate due to the retargeting step blurring the prediction image

(shown in Fig. 8 zoom-ins); however, this blurring adds mispredic-

tions which deteriorate the final image quality. Our methods provide

better fits, target the error explicitly, and are much superior when

the surrogate is good. With a bad surrogate, ours can be controlled

to never do worse than theirs.

8.2 Denoising
Our images are optimized for eliminating error and preserving

features when blurred with a given kernel. This blurring can be

seen as a simple form of denoising, and it is reasonable to expect

that the images are also better suited for general-purpose denoising
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Fig. 9. Comparison of our methods against the permutation approach of Heitz and Belcour [2019] at 4 spp; for the horizontal methods we show the result of
the 16th frame of static-scene rendering. Our two iterative minimization algorithms yield the best quality, while error diffusion is fastest (see Tables 1 and 2).
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Fig. 10. Balancing our iterative optimization between the surrogate (top
row) and the initial estimate (bottom row) via the parameter 𝒞 from Eq. (16).
For high-quality surrogates (left and middle columns), the best result is
achieved for values of 𝒞 close to 1. In contrast, strong structural artifacts
(right column) call for lowering 𝒞 to avoid fitting too closely to the surrogate.
The (subjectively) best image in each column is outlined in red.

than traditional white-noise renderings are [Heitz and Belcour 2019;

Belcour and Heitz 2021]. However, we have found that obtaining

such benefit is not straightforward.

In Fig. 11 we run Intel Open Image Denoise on the results from

our vertical iterative minimization. On the left scene, the input

samples ➀ have white-noise image distribution with large mag-

nitude; feeding their per-pixel averages to the denoiser, it cannot

reliably separate the signal from the noise and produces conspicu-

ous artifacts. Using this denoised image ➁ as a surrogate for our

optimization yields a “regularized” version ➂ of the input that is

easier for the denoiser to subsequently filter ➃. This process can be

seen as projecting the initial denoised image back onto the space of

exact per-pixel estimates (while minimizing the pMSE) whose subse-

quent denoising avoids artifacts. Note that obtaining this improved

result requires no additional pixel sampling.

On the right scene in Fig. 11, the moderate input-noise level is

easy for the denoiser to clean while preserving the faint shadow

on the wall. Our optimization subsequently produces an excellent

result which yields a high-fidelity image when convolved with the

optimization kernel 𝑔𝑔𝑔. Yet that same result is ruined by the denoiser

which eradicates the shadow, even though subjectively its signal-

to-noise ratio is higher than that of the input image. Overall, the

denoiser blurs our result➂ aggressively on both scenes, eliminating

not only the high-frequency noise but also lower-frequency signal

not present in auxiliary input feature buffers (depth, normals, etc).

It should not be too surprising that an image optimized for one

smoothing kernel does not always yield good results when filtered

with other kernels. As an example, Fig. 5 shows clearly that the op-

timal noise distribution varies significantly across different kernels.

While our kernel 𝑔𝑔𝑔 has narrow support and fixed shape, denoising

kernels vary wildly over the image and are inferred from the input

in order to preserve features. Importantly, modern kernel-inference

models (like in the used denoiser) are designed (or trained) to expect

mutually uncorrelated pixel estimates [Intel 2018]. This white-noise-

error assumption can also yield wide smoothing kernels that are

unnecessarily aggressive for blue-noise distributions; we suspect
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Fig. 11. By regularizing a noisy input, our optimization can help a denoiser
avoid producing artifacts (left scene), even though it targets a different
(perceptual) smoothing kernel 𝑔𝑔𝑔. However, it can also cause elimination of
image features during denoising (right scene, the shadow).

this is what hinders the denoiser from detecting features present in

our optimized results whose pixels are highly correlated.

Our firm belief is that denoising could consistently benefit from

error optimization, though that would require better coordination

between the two. One avenue for future work would be to tailor

the optimization to the kernels employed by a target denoiser. Con-

versely, denoising could be adapted to ingest correlated pixel esti-

mates with high-frequency error distribution; this would enable the

use of less aggressive smoothing kernels (see Fig. 3) and facilitate

feature preservation. As a more immediate treatment, image fea-

tures could be enhanced before or after our optimization to mitigate

the risk of them being eliminated by denoising.

8.3 Performance and utility
Throughout our experiments, we have found that the tested algo-

rithms rank in the following order in terms of increasing ability to

minimize perceptual error on static scenes at equal sampling cost:

histogram sampling, our dithering, permutation, our error diffusion,

our horizontal iterative, our vertical iterative. The three lowest-

ranked methods employ some form of dithering which by design

assumes (a) constant image signal and (b) equi-spaced quantization

levels shared by all pixels. The latter assumption is severely broken

in the rendering setting where the “quantization levels” arise from

(random) pixel estimation. Our vertical methods (dithering, error

diffusion, iterative) are more practical than the histogram sampling

of Heitz and Belcour [2019] as they can achieve high fidelity with a

much lower input-sample count. Horizontal algorithms are harder

to control due to their mispredictions which are further exacerbated

when reusing estimates across frames in dynamic scenes.

Our iterative minimizations can best adapt to the input and also

directly benefit from the extensions in Section 6 (unlike all others).

However, they are also the slowest, as evident in Table 2. Fortu-

nately, they can be sped up by several orders of magnitude through

additional optimizations from halftoning literature [Analoui and

Modern living roomModern living room Grey & white roomGrey & white room San MiguelSan Miguel

Wooden staircaseWooden staircase Japanese classroomJapanese classroom White roomWhite room

BathroomBathroom Modern hallModern hall

Fig. 12. Collage of the surrogates used in our experiments, obtained by
denoising the input estimates using Intel Open Image Denoise [Intel 2018].

Allebach 1992; Koge et al. 2014]; we discuss these optimizations in

the context of our rendering setting in supplemental Section 3.

Error diffusion is often on par with vertical iterative minimization

in quality and with dithering-based methods in run time. In a single-

threaded implementation it can outperform all others; parallel error-

diffusion variants exist too [Metaxas 2003].

Practical utility. Our methods can enhance the perceptual fidelity

of static and dynamic renderings as demonstrated by our experi-

ments. For best results and maximum flexibility, we suggest using

our vertical iterative optimization, optionally with the efficiency

improvements mentioned above. Figure 10 illustrates that in practi-

cal scenarios (middle and right columns) this method can improve

upon both the surrogate (top row) and the input-estimate average

(bottom row) for a suitable value of the confidence parameter 𝒞.
For maximum efficiency we recommend using our vertical error

diffusion. To obtain a surrogate, we recommend regularizing the

input estimates via fast denoising or more basic bilateral or non-

local-means filtering. Our optimization can then be interpreted as

reducing bias or artifacts in such denoised images (see Fig. 10). Sim-

ple denoising of the result may yield better quality than traditional

aggressive denoising of the input samples.

Progressive rendering. Our optimization methods produce biased

pixel estimates through manipulating the input samples; this is true

even for a-priori methods where the sampling is completely de-

terministic. Nevertheless, consistency can be achieved through a

simple progressive-rendering scheme: For each pixel, newly gener-

ated samples are cumulatively averaged into a fixed set of per-pixel

estimates that are periodically passed to the optimization to obtain

an updated image. Each individual estimate will converge to the

true pixel value, thus the optimized image will also approach the

ground truth—with bounded memory footprint. Interestingly, con-

vergence is guaranteed regardless of the optimization method and

surrogate used, though better methods and surrogates will yield bet-

ter starting points. Lastly, adaptive sampling is naturally supported

by vertical methods as they are agnostic of differences in sample

counts between pixels.

ACM Trans. Graph., Vol. 41, No. 3, Article 26. Publication date: June 2022.



Perceptual error optimization for Monte Carlo rendering • 26:15

Table 1. MSE and pMSE (Section 7.1) metrics for various methods (ours in bold) and scenes. For horizontal methods we show the metrics for the 16th frame
of static-scene rendering. In each section we highlight the lowest error number per column. For the same number of samples per pixel (spp), our methods
consistently outperform those of Heitz and Belcour [2019]—the current state of the art, except our dithering can do worse than their permutation method.

Method Bathroom Classroom Gray Room Living Room Modern Hall San Miguel Staircase White Room

MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE MSE pMSE

×10
−2
×10
−3
×10
−2
×10
−3
×10
−2
×10
−2
×10
−2

×10
−3

×10
−2

×10
−2

×10
−2
×10
−3
×10
−3
×10
−3
×10
−2

×10
−3

Random (4-spp average) 1.40 3.15 3.13 7.91 7.91 3.02 3.37 5.61 5.22 1.70 3.58 8.92 8.88 5.60 2.78 7.98

Vertical: Histogram [2019] (1/4 spp) 3.58 6.29 7.11 13.08 11.49 6.67 5.75 9.88 11.43 3.60 6.84 16.52 18.90 6.69 5.75 14.09

Vertical: Error diffusion (1/4 spp) 1.22 2.27 4.91 7.03 8.76 2.82 2.08 2.31 4.86 1.33 5.07 8.50 6.87 5.08 2.19 5.16

Vertical: Dithering (1/4 spp) 1.31 3.31 4.36 11.63 8.46 5.07 2.27 4.43 5.25 1.80 3.74 11.19 7.80 5.36 2.51 7.95

Vertical: Iterative (1/4 spp) 2.32 2.02 6.00 6.10 9.07 2.97 4.32 1.86 7.15 1.29 5.51 7.05 10.50 4.45 3.98 5.00

Vertical: Iterative (power set, 1/15 “spp”) 1.26 1.66 3.12 4.91 7.53 2.82 2.46 1.13 4.55 1.18 3.31 5.85 7.08 4.31 2.26 4.58

Horizontal: Permut. [2019] (frame 16, 4 spp) 1.40 2.79 3.15 7.25 7.90 2.84 3.38 3.14 5.21 1.51 3.59 8.51 8.87 5.40 2.72 6.73

Horizontal: Iterative (frame 16, 4 spp) 1.52 2.06 3.83 5.31 8.34 2.41 3.59 1.59 5.46 1.18 3.94 7.31 7.67 4.30 2.93 4.72

Random (16-spp average) 0.49 1.47 1.55 4.89 3.77 1.04 1.23 2.18 2.14 0.80 1.10 4.67 3.39 3.78 1.35 3.62

Vertical: Histogram [2019] (4/16 spp) 1.40 2.37 3.12 6.20 7.88 2.72 3.36 3.57 5.23 1.48 3.52 6.82 7.13 4.09 2.77 5.77

Vertical: Error diffusion (4/16 spp) 0.41 1.20 0.94 3.85 4.00 0.87 0.86 1.07 1.68 0.66 1.33 4.70 2.76 3.69 0.73 2.13

Vertical: Dithering (4/16 spp) 0.50 1.52 1.15 4.69 4.12 1.36 1.09 1.82 1.93 0.83 1.49 5.38 3.09 3.73 0.91 2.98

Vertical: Iterative (4/16 spp) 0.90 1.10 2.03 3.35 5.17 0.84 2.30 0.84 3.03 0.64 2.39 4.02 4.46 3.14 1.75 1.99

Table 2. Optimization run times (in seconds) for various methods (ours in bold) and scenes using 4 input samples per pixel (spp), excluding sampling and
surrogate construction. For horizontal methods we report the average time over 16 frames. Our error diffusion and dithering avoid sorting and are fastest;
though dithering-based, Heitz and Belcour’s approaches use sorting. Our iterative minimization methods are slowest (but can be sped up; see Section 8.3).

Method Bathroom Classroom Gray Room Living Room Modern Hall San Miguel Staircase White Room

Vertical: Histogram [2019] (1/4 spp) 0.06 0.07 0.11 0.06 0.02 0.09 0.08 0.06

Vertical: Error diffusion (1/4 spp) 0.04 0.03 0.04 0.04 0.01 0.06 0.04 0.04

Vertical: Dithering (1/4 spp) 0.04 0.03 0.04 0.04 0.01 0.05 0.04 0.04

Vertical: Iterative (1/4 spp) 18.44 111.41 12.82 15.26 5.43 29.09 15.21 19.45

Vertical: Iterative (power set, 1/15 “spp”) 95.09 404.12 59.69 83.41 23.93 137.89 35.39 102.05

Horizontal: Permutation [2019] (frame 16) 0.10 0.10 0.10 0.11 0.03 0.21 0.10 0.14

Horizontal: Iterative (frame 16) 23.04 21.57 22.00 30.08 8.48 36.36 23.78 22.76

9 CONCLUSION
We devise a formal treatment of image-space error distribution

in Monte Carlo rendering from both quantitative and perceptual

aspects. Our formulation bridges the gap between halftoning and

rendering by interpreting the error distribution problem as an ex-

tension of non-uniform multi-tone energy minimization halftoning.

To guide the distribution of rendering error, we employ a percep-

tual kernel-based model whose practical optimization can deliver

improvements not achievable by prior methods given the same

sampling data. Our model provides valuable insights as well as a

framework to further study the problem and its solutions.

A promising avenue for future research is to adapt even stronger

perceptual error models. Prior work has already demonstrated a

strong potential in reducing Monte Carlo noise visibility error using

visual masking [Bolin and Meyer 1998; Ramasubramanian et al.

1999]. Robust metrics, other than squared ℒ2 norm, can also be

considered with possible nonlinear relationships.

Our framework could conceivably be extended beyond the hu-

man visual system, i.e., for optimizing the inputs to other types

of image processing such as denoising. For such tasks, one could

consider lifting the assumption of a fixed kernel to obtain an even

more general problem where the kernel and sample distribution are

optimized simultaneously (or alternatingly).
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A ERROR DECOMPOSITION FOR HORIZONTAL
OPTIMIZATION

Substituting 𝑄𝑄𝑄(𝜋(𝑆𝑆𝑆)) = 𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) + ΔΔΔ into Eq. (9), we bound the

perceptual error using Jensen’s inequality and the discrete Young

convolution inequality [Hewitt and Ross 1994]:

𝐸(𝜋(𝑆𝑆𝑆)) = ∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼 + ΔΔΔ)∏︁2
2

(17a)

= 4∏︁0.5𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼) + 0.5𝑔𝑔𝑔 ∗ΔΔΔ)∏︁2
2

(17b)

≤ 2∏︁𝑔𝑔𝑔 ∗ (𝜋(𝑄𝑄𝑄(𝑆𝑆𝑆)) − 𝐼𝐼𝐼)∏︁2
2
+ 2∏︁𝑔𝑔𝑔∏︁2

1
∏︁ΔΔΔ∏︁2

2
. (17c)

The first term in Eq. (17c) involves pixel permutations in the readily

available estimated image𝑄𝑄𝑄(𝑆𝑆𝑆). In the second term we make an ap-

proximation that avoids rendering invocations: ∏︁ΔΔΔ∏︁2
2
≈ ∑𝑖 𝑑(𝑖, 𝜋(𝑖)),

where 𝑑(𝑖, 𝑗)measures the dissimilarity between the light-transport

integrals of pixels 𝑖 and 𝑗 . Dropping the constant 2, we take the

resulting bound as the optimization energy 𝐸𝑑 in Eq. (10b).

B SURROGATE CONFIDENCE CONTROL
Here we extend our perceptual error formulation to account for

deviations of the surrogate image 𝐼
′𝐼 ′𝐼 ′ from the ground truth 𝐼𝐼𝐼 . We

introduce a parameter 𝒞 ∈ (︀0, 1⌋︀ that encodes our confidence in the

quality of the surrogate and instructs the optimization how closely to

fit to it. Given an initial image estimate𝑄𝑄𝑄
init

(the per-pixel estimate

average for vertical optimization), we look to optimize for𝑄𝑄𝑄 . We

begin with an artificial expansion:

⌋︂
𝐸 = ∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −ℎℎℎ ∗ 𝐼𝐼𝐼∏︁2 (18a)

= ∏︁(1 − 𝒞)(𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −𝑔𝑔𝑔 ∗𝑄𝑄𝑄
init

) + 𝒞(𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′)+
(1 − 𝒞)(𝑔𝑔𝑔 ∗𝑄𝑄𝑄

init
−ℎℎℎ ∗ 𝐼𝐼𝐼) + 𝒞(ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′ −ℎℎℎ ∗ 𝐼𝐼𝐼)∏︁2 . (18b)

Using the triangle inequality we then obtain the following bound:

⌋︂
𝐸 ≤ ∏︁(1 − 𝒞)(𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −𝑔𝑔𝑔 ∗𝑄𝑄𝑄

init
) + 𝒞(𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′)∏︁2 +

∏︁(1 − 𝒞)(𝑔𝑔𝑔 ∗𝑄𝑄𝑄
init
−ℎℎℎ ∗ 𝐼𝐼𝐼) + 𝒞(ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′ −ℎℎℎ ∗ 𝐼𝐼𝐼)∏︁2 . (19)

The second term on the right-hand side can be dropped as it is

independent of the optimization variable𝑄𝑄𝑄 . We bound the square of

the first term using Jensen’s and Young’s convolution inequalities:

∏︁(1 − 𝒞)(𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −𝑔𝑔𝑔 ∗𝑄𝑄𝑄
init

) + 𝒞(𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′)∏︁2
2
≤ (20a)

(1 − 𝒞)∏︁𝑔𝑔𝑔∏︁2
1
∏︁𝑄𝑄𝑄 −𝑄𝑄𝑄

init
∏︁2
2
+ 𝒞∏︁𝑔𝑔𝑔 ∗𝑄𝑄𝑄 −ℎℎℎ ∗ 𝐼 ′𝐼 ′𝐼 ′∏︁2

2
. (20b)

We take this bound to be our optimization energy in Eq. (16), noting

that the squared norm in the second term is the original energy

with the surrogate 𝐼
′𝐼 ′𝐼 ′ substituted for the ground truth 𝐼𝐼𝐼 .

If a confidence map 𝒞𝒞𝒞 is available (e.g., as a byproduct of denois-
ing), the minimization can be done with per-pixel control:

𝐸𝒞𝒞𝒞 = ∏︁𝑔𝑔𝑔∏︁
2

1
∏︁
⌋︂
111 −𝒞𝒞𝒞⊙(𝑄𝑄𝑄 −𝑄𝑄𝑄

init
)∏︁2

2
+∏︁

⌋︂
𝒞𝒞𝒞⊙(𝑔𝑔𝑔∗𝑄𝑄𝑄 −ℎℎℎ∗𝐼 ′𝐼 ′𝐼 ′)∏︁2

2
. (21)
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