
RMIP: Displacement ray-tracing via inversion and oblong bounding

THÉO THONAT, Adobe, France
ILIYAN GEORGIEV, Adobe, UK
FRANÇOIS BEAUNE, Adobe, France
TAMY BOUBEKEUR, Adobe, France

Fig. 1. A scene where most geometric content comes from high-resolution displacement mapping. The base geometry and the 4k displacement maps tiled on
it are shown on the right. Our proposed method achieves 11× faster path tracing than TFDM [Thonat et al. 2021] while consuming 3× less memory.

High-performance ray tracing of triangle meshes equipped with displace-
mentmaps is a challenging task. Existingmethods either rely on pre-tessellation,
taking full advantage of the hardware but with a poor memory/quality trade-
off, or use custom displacement-centric acceleration structures, preserving
all the geometric details but being orders of magnitude slower. We intro-
duce a method that efficiently probes the displacement-map space to find
ray-surface intersections without relying on pre-tessellation. Our method
combines inverse displacement mapping and on-the-fly surface-bound com-
putation. It employs a novel data structure that provides tight displacement
bounds over rectangular regions in the displacement-map space. We demon-
strate the effectiveness of our approach in a production GPU path tracer. It
can achieve over an order of magnitude speed-up in render time compared
to state of the art in the most challenging real-time path-tracing scenarios,
while maintaining a low memory footprint.

CCS Concepts: • Computing methodologies→ Rendering.

Additional KeyWords and Phrases: GPURay Tracing, DisplacementMapping

ACM Reference Format:
Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur. 2023.
RMIP: Displacement ray-tracing via inversion and oblong bounding. In
SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers ’23), December
12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3610548.3618182

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SIGGRAPH Asia
2023 Conference Papers (SA Conference Papers ’23), December 12–15, 2023, Sydney, NSW,
Australia, https://doi.org/10.1145/3610548.3618182.

1 INTRODUCTION
Displacement mapping is a powerful mechanism to enrich base 3D
meshes with high-frequency details and mesostructures, offloading
most of the resulting representation to a (commonly high-resolution)
2D map providing, for any point of the surface, a displacement value.
At rendering time, the base geometry is deformed according to the
map, to recover the full-resolution shape. As such, large parts of the
shape processing and management can be performed on the low-
resolution base surface, leveraging the random-accessible nature
of the displacement map to provide easy level of detail, compres-
sion, and filtering. In practice, real-time displacement mapping is
often made available through rasterization engines, where hardware
tessellation triggers the displacement process at every frame. Unfor-
tunately, for real-time ray tracing, displacement mapping is typically
applied as a preprocess, producing a high-resolution mesh to be
maintained during rendering which still suffers from subsampling
artifacts in real-world scenarios.
Modern GPU architectures offer hardware support for ray trac-

ing [Sanzharov et al. 2020], which enables interactive physically-
based rendering based on Monte Carlo integration, in an aim to
bridge the gap between real-time and offline rendering. Primarily
designed for triangle meshes, this new programmable GPU pipeline
draws its efficiency from an underlying acceleration structure (AS),
organized in a top-level component (TLAS) and a bottom level one
(BLAS). However, such bounding volume hierarchies require explicit
realization of the high-resolution geometry, i.e., after tessellation
and displacement, which quickly fails at reproducing accurately

1

HTTPS://ORCID.ORG/0000-0001-5522-363X
HTTPS://ORCID.ORG/0000-0002-9655-2138
HTTPS://ORCID.ORG/0009-0005-6788-3877
HTTPS://ORCID.ORG/0000-0001-5985-0921
https://doi.org/10.1145/3610548.3618182
https://doi.org/10.1145/3610548.3618182

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

complex displacement maps over arbitrary macro domains, entails
a large memory footprint, is intractable when the displacement con-
tent is dynamic, and may ultimately not be possible when tiling the
displacement over the domain.
Tessellation-free displacement mapping (TFDM) has been re-

cently proposed as an alternative to explicit displacement mesh-
ing [Thonat et al. 2021]. It achieves full accuracy but exhibits limited
execution performance. We tackle this problem by introducing a
new data structure, dubbed RMIP, which allows to quickly discover
the displacement map subregions that are likely to intersect a ray.
It supports subregions with rectangular shape, enabling the propa-
gation of tight bounds between the 2D displacement space and the
3D ray space, to quickly narrow down the search for intersection in
a front-to-back manner. By often reducing the number of traversal
steps by over an order of magnitude, our method can achieve a
speed-up of 10× or more over TFDM, while preserving full accu-
racy (see Fig. 1) and remaining orthogonal to both the hardware
TLAS/BLAS traversal and the final ray-surface intersection test.

2 PREVIOUS WORK
Ray-traced displacement maps. Offline rendering of scenes with

complex geometry sparked many extensions of the Reyes architec-
ture, driven by caching and ray reordering [Christensen et al. 2003].
Lazy building of local accelerations structures was explored by Hunt
et al. [2007]. Hanika et al. [2010] extended it to two-level accelera-
tion structures, where the lower levels are populated by structures
resulting from on-demand surface tessellation. A similar scheme has
been used in the context of vector displacement mapping [Harada
2015]. Performance in these setups critically depends on ray reorder-
ing to maximize the reuse of the local structures. In contrast, we use
an implicit acceleration structure unique to each ray, generating the
micro-structure only at the scale of the displacement texels, thus
free of ray reordering constraints.
The Razor system [Djeu et al. 2011] allows each ray to indepen-

dently choose its appropriate geometric resolution. It relies on lazy
evaluation and caching of local tessellations at discrete levels of
detail (LoDs) that are interpolated at intersection time to generate
fractional LoDs. Our per-ray traversal structure allows intersecting
the displaced surface directly at fractional LoDs, since we generate
the surface explicitly only during the final steps of the traversal.

Real-time displacement mapping. In the context of rasterization,
numerous methods have been proposed to render surface details
in real time without tessellation. In particular, probing a height
map to find approximate intersections with the meso-surface has
been extensively studied. Parallax mapping [Kaneko et al. 2001;
Tatarchuk 2006] offsets the intersection in texture space based on
the height content. Sampling the height field using ray-marching
allows finding a pair of points above and below the surface, which
is the starting point for several refinement methods, for example
using the secant method [Yerex and Jägersand 2004], using binary
search with relief mapping [Policarpo et al. 2005], or using a minmax
texture [Lee et al. 2009]. Height maps can also be pre-processed to
encode empty space near the surface, allowing to safely ray-march
with adaptive steps. Numerous safety shapes has been proposed,

such as spheres [Hart 1996; Donnelly 2005], cones [Dummer 2006;
Policarpo and Oliveira 2007], and cylinders [Baboud et al. 2011].
An in-depth overview of meso-surface real-time rendering can be
found in the survey of Szirmay-Kalos et al. [2009]. All those methods
approximate the tangent space by a locally flat height field. This
makes the rendered surface view-dependent when the base surface
has curvature, making those methods unsuitable for our ray tracing
context.
Another type of approaches consists in pre-computing intersec-

tions with the meso-surface from a dense sampling of query rays
and compressing them in a suitable way for real time rendering.
Early methods rely on singular value decomposition [Wang et al.
2003, 2004]; recent works use a small set of neural nets with spatially
variant weights, stored in textures, and mapped onto a bounding
volume [Kuznetsov et al. 2021, 2022]. Although such methods han-
dle a variety of meso-geometries beyond scalar displacement, their
encoding requires expensive pre-processing, with rendering quality
proportional to the memory consumption. In contrast, our method
requires minimal pre-processing and storage, while preserving the
full geometric and visual complexity of the displacement content.

Inverse mappings. Mapping the vicinity of a 3D surface back to its
texture space allows transforming ray tracing of complex, possibly
volumetric, meso-structures to simpler 2D tracing. In the context
of shell mapping, Porumbescu et al. [2005] create a thin volumetric
layer around the surface by extruding the mesh outward in the
normal directions. Rays intersecting this volume can be mapped
to texture space, where traditional real-time height-field-marching
techniques can be applied, although inheriting their shortcomings.
Since the mapping from world to texture space is non-linear, special
care is required to handle the tracing of curved ray paths to avoid
missing intersections from the height field [Jeschke et al. 2007]. In
the context of displacement mapping, Patterson et al. [1991] project
intersections between the ray and a bounding volume back to tex-
ture space following the directions of displacement. They use these
projected intersections to conservatively track the ray in texture
space which greatly reduces the search region for intersection. Their
method, and its extension [Logie and Patterson 1995], is limited to
a number of analytical base surfaces; we utilize this mapping and
extend inverse displacement mapping to triangle meshes.

Implicit acceleration structures for ray tracing. The memory bur-
den of accelerating the ray tracing of highly detailed geometry has
lead to the development of implicit acceleration structures. Simi-
larly to our work, Heidrich and Seidel [1998] use affine arithmetic
to estimate 3D bounds in the context of procedural shaders with
analytical base surfaces and displacement. The work of Smits et al.
[2000] allows ray tracing of displaced triangle meshes without tes-
sellation, marching through bounding prisms defined from the base
triangle barycentric space. We also use bounding prisms and linear
marching, although we apply them only at specific steps of our
traversal. Bounding prisms and barycentric grids were also used
by Maggiordomo et al. [2023] to efficiently compress displacement
content, in a way that can be ray-traced with hardware support
without pre-tessellation. In our case, base triangles generally do not
coincide with faces of the bounding prisms (see Fig. 2).

2

RMIP: Displacement ray-tracing via inversion and oblong bounding SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

(a) Input

Triangle mesh

Displacement
texture

RMIP structure

(b) Pre-processing

Displacement parameters:
scale, offset, tiling, . . .

Displaced-surface
bounding prisms

(c) Displacement mapping

Ray

Object space

Texture space Texel marchingAffine
arithmetic

Displacement
inversion

Local tessellation
& displacement

(d) Ray traversal and surface intersection

Fig. 2. Overview of our method. (a) The input is a triangle mesh and a displacement map. (b) We first pre-process the map into our novel RMIP data structure
that stores minmax displacement bounds over rectangular regions in texture space. (c) Once the displacement is mapped onto the triangle mesh according to
the displacement parameters, a tight bounding prism for the displaced surface within each base triangle is computed, and all prisms are organized into a static
bounding volume hierarchy. (d) At ray-tracing time, any intersection between a ray and a bounding prism triggers our custom traversal, which ping-pongs
between 2D ray bounds in texture space and 3D displacement bounds in object space to tighten the interval of potential intersection in a hierarchical fashion
(see Fig. 3). Once the 2D bounds are small enough, we switch to a texel-marching process, generating and intersecting micro-geometry on-the-fly along the ray.

Carr et al. [2006] use minmax mipmaps to efficiently ray-trace
geometry images, building an implicit quad-tree bounding volume
hierarchy in𝑢𝑣 space. Similarly, the work of Oh et al. [2006], later im-
proved by Tevs et al. [2008], use a maximum displacement mipmap
as an implicit hierarchical data structure, restricted to height fields
on planar surfaces.
Most relevant to our work is the tessellation-free displacement

mapping (TFDM) method of Thonat et al. [2021]. They use a minmax
mipmap both to locally bound the displacement and as an accelera-
tion structure for ray traversal in texture space. Displaced-surface
bounds are generated on-the-fly from the quad-tree nodes using
affine arithmetic and tested against the ray. Analytic ray-surface
intersection is performed upon reaching a texel-sized node. TFDM
supports fractional LoD and displacement tiling, and achieves great
pre-computation and memory savings. Unfortunately, these savings
come at the cost of substantial computational burden during render-
ing due to loose bounds and inefficient space culling leading to long
traversals. Our work addresses these shortcomings to significantly
improve performance without sacrificing the benefits of TFDM.

3 OUR METHOD
We propose a method for direct ray tracing against a triangle mesh
displaced by a scalar texture map, avoiding the explicit displacement
of a fine pre-tessellation. Ray-geometry intersection algorithms op-
erate by iteratively shrinking the interval along the ray through
space culling, typically by traversing the ray through a spatial struc-
ture that bounds the geometry at multiple scales. Maintaining tight
bounds is key to achieving good performance as it minimizes the
number of costly traversal steps required to descend to a scale where
analytic intersection testing is possible. Tessellation-free displace-
ment mapping (TFDM) [Thonat et al. 2021] operates in texture space,
traversing a minmax mipmap quad-tree. While simple, this scheme
suffers from slow interval tightening and long traversal, for three
reasons: (1) The tree structure is fixed—it does not depend on the
displacement data; (2) The texture-space footprint (i.e., projection)

of a ray segment is generally anisotropic but the tree nodes only pro-
vide conservative displacement bounds over square-shaped regions;
(3) Hierarchy pruning is solely based on a simple binary (yes/no)
feedback from the intersections of the loose 3D-box bounds derived
from the nodes.
The main idea behind our method is to track tight ray-interval

bounds simultaneously in 2D texture space and 3D object space. It
is inspired by the observation that each space has access to unique
information that can be leveraged to effectively tighten the bound
in the other space: Subdividing a 2D ray bound (i.e., a region in
texture space bounding the curved ray projection) yields tighter
scalar displacement bounds and thus tighter 3D-surface bounds.
Intersecting those 3D bounds then tightens the valid ray interval and
shrinks its 2D footprint. This ping-pong scheme can tighten bounds
rapidly and thus speed up space culling to reduce the number of
traversal steps; Fig. 3 shows an illustration in flatland. Patterson et al.
[1991] explored the scheme for analytical base surfaces; we extend
it to triangle meshes with interpolated displacement directions.
For the above-described scheme to be effective, we need to not

only map 2D ray-interval bounds to 3D geometry bounds but also
3D ray-intersection intervals back to 2D. For the 2D→3D map-
ping, we employ affine arithmetic as Thonat et al. [2021]. For the
3D→2D mapping, we use displacement inversion to project the
endpoints of ray-intersection intervals to axis-aligned bounds in
texture space. These 2D bounds can have highly anisotropic rect-
angular shapes; conservatively snapping them to the predefined
square-shaped nodes of a minmax mipmap would yield valid but ex-
cessively loose bounds for the displacement inside them. To that end,
we introduce a novel data structure, dubbed rectangular minmax im-
age pyramid (RMIP), that provides displacement bounds for arbitrary
axis-aligned rectangular regions in texture space. Crucially, RMIP
divorces us from rigid traversal hierarchies and liberates us to cull
space efficiently based on the specific ray-triangle configuration.

3

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

1 2

3

3

3

2 4

(a) 2D-bound reduction via
3D-bound intersection

(b) 3D-bound reduction via
2D-bound subdivision

(c) Rinse &
repeat

Fig. 3. Overview of our traversal algorithm which ping-pongs between
2D and 3D to iteratively tighten the ray interval of potential intersection.
(a) For a given initial bound (1) in the 2D displacement-texture space, we
compute displacement bounds to obtain a 3D box around the displaced
surface. Projecting the ray-box intersection interval back into texture space
yields a reduced 2D bound (2). (b) This ray-bounding region (2) is then
subdivided into two subregions (3) which in turn yield tighter 3D bounds.
(c) The ray interval of the first intersected box is projected back onto 2D
as in step (a), and the process repeats by feeding the obtained tighter 2D
bound (4) to step (b).

Algorithm overview. Figure 2 illustrates our method. Given a tri-
angle mesh equipped with per-vertex displacement normals and a
displacement texture, we first construct the RMIP structure which
stores scalar displacement bounds over rectangles of various size
and shape in texture space. Then for each triangle we compute a
prism that tightly bounds the displaced 3D surface arising from it;
we build a bounding volume hierarchy over all prisms.

During ray tracing, each intersected prism triggers our per-triangle
traversal algorithm, laid out in Alg. 1. It first projects the ray-prism
intersection interval to texture space. This 2D projection is a curve
which may need to be split into sub-curves so that each can be
bounded by the axis-aligned rectangle spanned by its endpoints; the
bounding rectangles are pushed to a stack. The traversal loop then
pops rectangular bounds from the stack and alternates between
(1) computing 3D-surface bounds from displacement bounds over
rectangles and intersecting them (Fig. 3a), and (2) projecting the
3D ray-intersection intervals and subdividing the rectangles that
bound them (Fig. 3b). When the current 2D bound becomes small
enough, we switch to marching along the displacement texels it
spans, locally reconstructing the displaced 3D surface for each texel
and testing it for intersections. Unlike TFDM [Thonat et al. 2021],
thanks to traversing in a front-to-back manner along the ray, we
can terminate as soon as we find an intersection.
Using bounding prisms provides a good compromise between

intersection complexity and tightness, especially since it achieves
space subdivision—the displaced-surface bounds of neighboring
triangles do not overlap in 3D (see Fig. 2c). In the supplemental
document we discuss the geometry of the prisms, how to construct
them, and how to intersect them to obtain the initial bounds for the
traversal. An even more important advantage of using prisms over
axis-aligned 3D boxes is the guarantee that every 3D location inside
them can be successfully projected to texture space. We discuss
this aspect in Section 4 below; there, we also formally describe our
rectangular texture-space ray bounds, how our traversal tightens
those bounds iteratively, and how we perform texel marching. In
Section 5 we present our novel RMIP data structure that provides
tight scalar displacement bounds over rectangles in texture space. In

Algorithm 1. Pseudo-code of our displacement intersection algorithmwhich
iteratively tightens ray bounds in both 2D texture space and 3D object space,
using our RMIP structure.

1: function IntersectRMIP(𝑟𝑎𝑦, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 , 𝑝𝑟𝑖𝑠𝑚, 𝑟𝑚𝑖𝑝)
2: 𝑝𝑜𝑖𝑛𝑡𝑠 = sort(intersect(𝑟𝑎𝑦, 𝑝𝑟𝑖𝑠𝑚))
3: 𝑏𝑜𝑢𝑛𝑑𝑠 = inverse displacement(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) ← Section 4.1
4: 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠 = zero 𝑢𝑣 derivative(𝑟𝑎𝑦, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) ← Section 4.2
5: 𝑏𝑜𝑢𝑛𝑑𝑠 = split(𝑏𝑜𝑢𝑛𝑑𝑠, 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠) ← Section 4.2
6: while 𝑏𝑜𝑢𝑛𝑑𝑠 is not empty do ← Stack of 2D ray bounds
7: 𝑏𝑜𝑢𝑛𝑑 = 𝑏𝑜𝑢𝑛𝑑𝑠.pop()
8: if 𝑏𝑜𝑢𝑛𝑑 is smaller than𝑚𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑎𝑙𝑒 then
9: for 𝑡𝑒𝑥𝑒𝑙 in texel marching(𝑏𝑜𝑢𝑛𝑑) do ← Section 4.3
10: if ℎ𝑖𝑡 = displaced surface intersect(𝑟𝑎𝑦, 𝑡𝑒𝑥𝑒𝑙) then
11: return ℎ𝑖𝑡 ← Front-to-back traversal, terminate on first hit
12: 𝑏𝑜𝑥 = surface bounds(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒,𝑏𝑜𝑢𝑛𝑑, 𝑟𝑚𝑖𝑝) ← Section 5
13: if not ℎ𝑖𝑡𝑠 = intersect(𝑟𝑎𝑦,𝑏𝑜𝑥) then
14: continue
15: 𝑏𝑜𝑢𝑛𝑑 = reduce(𝑏𝑜𝑢𝑛𝑑,ℎ𝑖𝑡𝑠) ← Section 4.3
16: for 𝑓 𝑟𝑜𝑛𝑡,𝑏𝑎𝑐𝑘 in split(𝑏𝑜𝑢𝑛𝑑) do ← Section 4.3
17: 𝑏𝑜𝑢𝑛𝑑𝑠 .push(𝑏𝑎𝑐𝑘, 𝑓 𝑟𝑜𝑛𝑡) ← Back first so front is pop earlier

Section 6 we present results of our method, along with an ablation
study around different traversal components.

4 TEXTURE-SPACE TRAVERSAL
Obtaining the tightest possible displacement bounds along a ray
requires the ability to track its projection in 2D texture space. This
projection—along the displacement-direction field defined by the
interpolated vertex normals—is a curve (see Fig. 2d), and deriving
an explicit 1D parametrization for it is difficult. Luckily, a simple
implicit form for the curve is easy to obtain. That form, in combi-
nation with point-wise displacement inversion, allows us to bound
the curve using axis-aligned rectangles. Below we describe how we
project the endpoints of 3D ray intervals to 2D locations and how
we derive tight curve-bounding rectangles from them using the
implicit form. We also show how to use that form to subdivide those
bounds and to march along the exact displacement texels crossed
by the ray.

4.1 Point-wise inversion
A triangle with linearly interpolated positions P(𝑢, 𝑣) and normals
N(𝑢, 𝑣) at texture coordinates 𝑢𝑣 maps texture space to a 3D surface

S(𝑢, 𝑣) = P(𝑢, 𝑣) + ℎ(𝑢, 𝑣) N(𝑢, 𝑣)
∥N(𝑢, 𝑣)∥ (1)

which is a result of displacing P by an amount ℎ in the direction N.
The displacement lines are depicted in Fig. 3a. Projecting a point
O + 𝑡D at distance 𝑡 along a ray with origin O and direction D into
texture space requires inverting this mapping. That is, we look for
the 𝑢𝑣 coordinates whose displacement line intersects the point:

(P(𝑢, 𝑣) − (O + 𝑡D)) × N(𝑢, 𝑣) = 0. (2)

Note that this is a vector equation. In the context of shell mapping,
Jeschke et al. [2007] provided an analytic inverse of it, as a (scalar)
cubic equation w.r.t. the ray parameter 𝑡 . However, we found out
that an iterative Newton-based numerical inversion of Eq. (2) is

4

RMIP: Displacement ray-tracing via inversion and oblong bounding SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Base triangle

Iteration
count

≥ 5
4
3
2
1

Outside
triangle

No
convergence

Fig. 4. Number of steps required for projecting 3D points onto a base triangle
by numerically inverting Eq. (2) (lower is better), visualized here in false
color for 3D locations on a plane orthogonal to the base triangle. Not all
3D points can be successfully projected; however, we only deal with points
located inside a prism around the triangle, and these are guaranteed to fall
inside the triangle (see Section 4.1).

both faster and more stable. As seen in Fig. 4, a few iterations are
typically sufficient to reach convergence.

Figure 4 also shows that the displacement inverse is not defined
for every 3D point. The key advantage of using a prism as a 3D
bounding primitive over a simple axis-aligned box is that it is fully
contained inside the convergence region, providing the guarantee
that all our projections will fall inside the base triangle.

4.2 Implicit ray projection
We now have the ability to project the endpoints of a ray interval
to texture space. The rectangle spanned by these projections will
bound the 2D-interval curve if the curve’s partial derivatives w.r.t.
𝑢 and 𝑣 are non-zero, i.e., if the curve does not change its principal
direction inside the rectangle, as shown by Patterson et al. [1991].
We therefore must identify such “turning” points and subdivide
the curved interval into sub-intervals with non-zero derivatives
that can each be easily rectangle-bounded. The projected ray has
a simple implicit form, allowing us to retrieve those points using
closed-form computations. That form is derived by transforming
Eq. (2) to remove its dependency on the ray parameter 𝑡 :

𝜓 (𝑢, 𝑣) = det (P(𝑢, 𝑣) − O,N(𝑢, 𝑣),D) = 0. (3)

This is a quadric in texture space with partial derivatives[
𝜓𝑢
𝜓𝑣

]
=

[
det (P𝑢 ,N(𝑢, 𝑣),D) + det (P(𝑢, 𝑣) − O,N𝑢 ,D)
det (P𝑣,N(𝑢, 𝑣),D) + det (P(𝑢, 𝑣) − O,N𝑣,D)

]
, (4)

where P𝑢 , P𝑣 , N𝑢 , and N𝑣 , are the partial derivatives of the interpo-
lated base position and normal—all constant inside a base triangle.

𝑢
𝑣

𝜓𝑢 = 0

Each 𝜓𝑢 = 0 and 𝜓𝑣 = 0 defines a line in tex-
ture space. We can retrieve the zero-derivative
points by intersecting the projected ray with
those two lines, which boils down to solving
two quadratic equations. This yields at most
four such points, meaning at most four subdivisions of the initial
interval. In practice we never end up subdividing more than once.

3 3 3

2

4 4

1

2

Tightening via: (a) inversion (b) ray subdivision (c) our bound subdivision

Fig. 5. Our traversal narrows down the search along the ray by tightening
its 2D bound in two ways. (a) Projecting the endpoints of the 3D-bound
intersection interval to texture space can yield a tighter 2D bound. (b) Ad-
ditionally projecting the interval’s midpoint [Patterson et al. 1991] allows
subdividing the 2D bound but yields unbalanced traversals and suboptimal
space culling. (c) We instead directly split the 2D bound in the middle, with
a number of advantages: it is faster, culls half the bound area, yields a more
balanced traversal, and bounds the number of traversal steps.

4.3 Ray-bound tightening
The goal of the traversal is to tighten the ray bound until it is small
enough to allow direct intersection tests with a local, texel-level
reconstruction of the displaced surface. We have two ways to shrink
that bound which we illustrate in Fig. 5 and detail next.

Ray-interval projection. Every time we perform ray-box intersec-
tion in 3D, we invert the displacement for the intersection-interval
endpoints (Fig. 5a). This can yield a new 2D ray bound that is
tighter than the initial one, sometimes drastically. Rays that are
near-parallel to the displacement directions have 2D projections
smaller than the size of a texel. Traversal-time complexity is thus
constant for such rays as they can be directly tested against the
displaced surface within that texel.

Bound subdivision. Bound tightening via interval projection is
beneficial only for some rays. We need explicit subdivision to guar-
antee that bounds eventually shrink to a size small enough for
direct intersection. To that end, Patterson et al. [1991] project the
3D intersection-interval midpoint to texture space to form the two
subdomains (Fig. 5b). However, in our case the 3D bounds are com-
puted using range arithmetic, providing no tightness guarantee.
Thus the midpoint texture-space projection can lie anywhere along
the projected ray, which can lead to unbalanced splitting and arbi-
trarily long traversal. We instead split the domain directly in texture
space: we use the implicit form to compute the intersection between
the interval curve and the line splitting the longer side of the bound
in the middle (Fig. 5c). This scheme culls half the bound area and
puts a strict upper bound on the number of traversal steps.

4.4 Texel marching
The final stage of our traversal routine is a direct intersection test
with a local reconstruction of the displaced surface. This step is
triggered when the 2D bounds become small enough, typically the

5

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

𝑢

𝑣

𝜓 (𝑢, 𝑣) > 0

𝜓 (𝑢, 𝑣) < 0
size of a texel [Thonat et al. 2021].
However, we found that it is more effi-
cient to stop the traversal earlier, and
march along the projected ray through
the texels it crosses. The sign of the
implicit form 𝜓 (3) at each texel cor-
ner indicates from which edge the ray
leaves the texel, as illustrated in the
inline figure on the right.
We identify two reasons why switching to direct intersection

earlier is more efficient. Firstly, our 2D bounds are arbitrary rectan-
gles that are not aligned with the texels of the displacement map.
That is, a texel is typically covered by multiple rectangles along the
ray, which leads to multiple, redundant direct-intersection tests for
that texel. Texel marching amortizes this redundancy. Secondly, the
(finest) resolution of our RMIP structure may be smaller than that
of the input displacement map. Once the 2D ray bounds become
smaller than the RMIP resolution, the scalar displacement bounds
returned by RMIP stop getting tighter. Texel marching allows to
avoid querying the RMIP below this threshold size. In Section 6 we
discuss the performance impact of the rectangle-size threshold at
which we switch to texel marching.

5 RMIP STRUCTURE
The axis-aligned bounds of ray intervals in texture space can have
arbitrary rectangular shape, assuming the rays are uniformly dis-
tributed in 3D. Recall that our traversal requires bounds for the
scalar displacement inside these rectangles. A minmax mipmap, the
standard data structure used to retrieve such bounds, would provide
excessively loose bounds for highly anisotropic queries. To that end,
in this section we introduce a novel minmax data structure that
we call rectangular minmax image pyramid (RMIP), which provides
bounds for arbitrarily shaped rectangles.

The 2D range minimum query (RMQ) problem asks for the mini-
mum value over axis-aligned rectangular regions within a discrete
2D grid. This problem has been well studied in the literature, and
solutions typically rely on pre-possessing the input grid into a
data structure, with different trade-offs in complexity between pre-
processing time, query time, and storage [Fischer and Heun 2011;
Brodal et al. 2012]. Solutions to the 2D RMQ problem with constant-
time query and asymptotic linear pre-processing time and storage
are known [Yuan and Atallah 2010], but the amount of intermedi-
ate data structures and indirections required for a query make the
practicality of an implementation unclear for real time rendering.

We instead follow the approach of Amir et al. [2007], who noted
that any 2D range query can be decomposed into four, possibly
overlapping sub-queries whose side lengths are powers of two. It is
therefore sufficient to pre-compute the minmax values for all such
sub-queries. Such a query is specified by its side length (2𝑝 , 2𝑞),
with 0 ≤ 𝑝, 𝑞 ≤ log2 𝑁 , and the position of its top left corner (𝑥,𝑦),
with 0 ≤ 𝑥 < 𝑁 − 2𝑝 , and 0 ≤ 𝑦 < 𝑁 − 2𝑞 . We assume the input
displacement map is square with power-of-two side 𝑁 . We denote
by 𝐻

𝑝,𝑞
𝑥,𝑦 the precomputed minmax query with size (2𝑝 , 2𝑞) and

position (𝑥,𝑦). The query for a rectangle with arbitrary size (𝑤,ℎ)

This texel stores minmax over

this query region

Query region inside texture square

Query region wrapping around boundaries

Query index (𝑝,𝑞)
LoD

0

1

2

(0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)

Fig. 6. Layout of our RMIP structure as a 2D texture with multiple layers
(columns) and mip levels (rows). Each pixel of every sub-texture represents
the top-left corner of a query and stores the minmax displacement value
over a region of size (2𝑝 , 2𝑞) . We show example queries in color, with top-
left corners marked by circles. Green queries are contained fully inside the
unit texture square; orange queries cross the square, enabling the use of
Alg. 2 with wrapping queries. Semi-transparent layers are copies of other
layers within the same mip level, enabling hardware sampling at fractional
level of detail (LoD), i.e. interpolation across levels (rows).

and top-left position (𝑥,𝑦) is the minmax of four 𝐻 values:

𝑅𝑀𝑄 (𝑥,𝑦,𝑤,ℎ) = minmax
(
𝐻
𝑝,𝑞
𝑥,𝑦 , 𝐻

𝑝,𝑞
𝑚𝑥 ,𝑦, 𝐻

𝑝,𝑞
𝑚𝑥 ,𝑚𝑦

, 𝐻
𝑝,𝑞
𝑥,𝑚𝑦

)
, (5)

where

ℎ

𝑤

2𝑝

2𝑞
(𝑝, 𝑞) = ⌊log2 (𝑤,ℎ)⌋,

(𝑚𝑥 ,𝑚𝑦) = (𝑥,𝑦) + (𝑤,ℎ) − (2𝑝 , 2𝑞).

We have (1 + log2 𝑁)2 possible query
sizes, and for each we have 𝑁 2 possible
positions, so there are 𝑁 2 (1 + log2 𝑁)2
total minmax 𝐻 values. We assemble the values for each query size
(2𝑝 , 2𝑞) into a 2D grid, at power-of-two scales. We pack all grids
into one multi-layer, multi-level texture that maps efficiently onto
triangle meshes. This texture, depicted in Fig. 6, is what we call our
RMIP structure; Alg. 2 shows pseudo-code for querying it.
In the supplemental document we describe how we construct

the RMIP from a given displacement map, and how we practically
reduce its memory footprint from 𝑁 2 (1 + log2 𝑁)2 to 𝑁 2, i.e. to the
order of a classical mipmap. We also discuss details about bounding
continuously interpolated (displacement) signals, tiled over the 𝑢𝑣
plane, and fractional-LoD support.
For micro-structure rendering, Wang et al. [2020] proposed a

similar data structure, also based on that of Amir et al. [2007]. Our
RMIP structure encodes a richer set of queries, supporting tiled
signals and fractional LoDs, and has a GPU-friendly implementation.
Moreover, our compression scheme is better suited to ray-tracing
applications where bound tightness is crucial at early traversal steps.
Our scheme reduces tightness mostly on queries smaller than the
RMIP resolution, which only occur late in the traversal. In contrast,
squared precomputed queries yield looser bounds at all scales.

6

RMIP: Displacement ray-tracing via inversion and oblong bounding SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Algorithm 2. Range minmax query (RMQ) using our RMIP structure, for a
given 𝑢𝑣 rectangle and a (possibly fractional) level of detail (LoD) 𝜆.

1: function RMIP_RMQ(𝑢𝑣min, 𝑢𝑣max, 𝜆, 𝑟𝑚𝑖𝑝)
2: 𝑟 = textureSize(𝑟𝑚𝑖𝑝, 0) ← RMIP resolution at LoD 0
3: 𝑝min = ⌊𝑢𝑣min · 𝑟 ⌋, 𝑝max = ⌈𝑢𝑣max · 𝑟 ⌉ ← Query pixel corners
4: 𝑠 = ⌊log2 (𝑝max − 𝑝min) ⌋ ← Query log size in pixels
5: 𝑖 = 𝑠.𝑥 + 𝑠.𝑦 · rmip array stride ← RMIP texture array layer index
6: 𝑢𝑣min = (𝑝min + 0.5) / 𝑟 ← Adjust to pixel center
7: 𝑢𝑣mid = (𝑝max + 0.5 − 2𝑠) / 𝑟 ← Bottom-left sub-query’s top right
8: 𝑏1 = textureLoD(𝑟𝑚𝑖𝑝,𝑢min, 𝑣min, 𝑖, 𝜆) ← Top-left sub-query
9: 𝑏2 = textureLoD(𝑟𝑚𝑖𝑝,𝑢mid, 𝑣min, 𝑖, 𝜆) ← Top-right sub-query
10: 𝑏3 = textureLoD(𝑟𝑚𝑖𝑝,𝑢min, 𝑣mid, 𝑖, 𝜆) ← Bottom-left sub-query
11: 𝑏4 = textureLoD(𝑟𝑚𝑖𝑝,𝑢mid, 𝑣mid, 𝑖, 𝜆) ← Bottom-right sub-query
12: return minmax(𝑏1, 𝑏2, 𝑏3, 𝑏4)

6 RESULTS
We implemented our method on CPU and GPU, using Embree [Wald
et al. 2014] and Vulkan Ray Tracing [Khronos 2020]. Our two-level
approach (find base triangle, then intersect it) is supported by those
ray-tracing frameworks through custom geometry. It requires a
bounding box for each custom primitive—per bounding prism in
our case, and a custom intersection program—our hybrid traversal.
We present results of our method integrated in the Adobe Mer-

cury Rendering Engine. We show examples with high-resolution
displacement maps, a range of tiling factors, and variety of base sur-
faces, seen in Fig. 8. All results were produced on a desktop machine
with a 16-core AMD Ryzen 9 5950X CPU and an NVIDIA RTX 3080
GPU with 10GB of memory. We evaluate our method along three
axes: performance, visual quality, and memory footprint.

Tessellation-free displacement. Our main competitor is the TFDM
method [Thonat et al. 2021]. As we share a common tessellation-free
framework, ours has identical inputs and outputs, and yields the
same visual quality. We therefore compare performance and mem-
ory consumption. As seen in Table 1, ours significantly outperforms
TFDM in an equal-memory setup, with an average speed-up of 5×
(with a 3× standard deviation) over all scenes. We also show that
we can reach their level of performance with only a fraction of the
memory cost. In Fig. 11, we show that our method performs increas-
ingly better when pushing the displacement scaling or displacement
tiling, confirming its better asymptotic traversal complexity. Finally,
Fig. 9 shows that our ray-adaptive hierarchies reduce the number
of considered 2D bounds during traversal (i.e., the size of the while
loop in Alg. 1) by an order of magnitude over TFDM.

Editability. As our data structures are efficient to compute on the
GPU, displacement editing is as easy as in TFDM. Displacement
modifications trigger an RMIP rebuild. With our compression, this is
equivalent to building a minmax mipmap, and takes approximately
5ms for a 4k displacement map using a naive implementation. On
the other hand, modifying the displacement parameters triggers pre-
computations only for the base triangles, most notably the bounding
prisms, which takes less than 1ms on all our examples.

Ablation study. We study several components of ourmethod. First,
we swap out RMIP for a standard minmax mipmap in our traversal.

Fig. 7. Caustics rendered using photon mapping, without displacement
mapping (left) and using our method (right).

Such a mipmap can be used to compute bounds on an arbitrary axis-
aligned rectangle by finding the smallest four neighboring texels
whose union contains the rectangle [Greene et al. 1993], as used for
GPU occlusion culling [Shopf et al. 2008]. In Fig. 10 we show that
in our ray-tracing context, at equivalent memory consumption, the
bounds obtained from the mipmap degrades performance compared
to RMIP. This is because the queries are made over arbitrary rectan-
gles bounding ray projections, and the mipmap performs poorly for
such generally anisotropic queries.
Second, we rely on texel marching to both amortize query-texel

misalignments and compensate for the limited RMIP resolution. We
use a marching scale parameter to control the 2D-size threshold
below which we switch from bound subdivision to texel march-
ing. In Fig. 10 we show that for every RMIP resolution there is a
marching-scale sweet-spot that gives the best performance. Intu-
itively, a large scale leads to a displacement-map traversal without
much hierarchical acceleration, which is costly for high-resolution
maps. Conversely, a small marching scale means the query-texel
misalignment and limited RMIP resolution are no longer amortized.

Finally, we study the efficiency of 2D-bound tightening through
point-wise displacement inversion (Fig. 5a). While inversion is criti-
cal for initializing the traversal, its usage during traversal (line 15
in Alg. 1) is optional since 2D-bound subdivision (Fig. 5c) is enough
to guarantee consistent bound shrinkage. We show in Fig. 12, that
while inversion provides significant performance improvement on
average on CPU, its benefit on GPU is much less pronounced. We hy-
pothesize that this difference is due to the SIMD nature of the GPU
execution model. Indeed, while numerical inversion is relatively
fast, it remains a costly operation that provides a significant region
reduction only in certain configurations, e.g., when the ray hits an
on-the-fly 3D AABB from the top or bottom. So since our traversal is
heavily ray-dependant, it is unlikely that multiple traversals within
an execution warp encounter a beneficial inversion.

7 DISCUSSION
Limitations & future work. When using displacement maps with

moderate resolution or limited tiling, and keeping the displacement
content static, then combining pre-tessellation, pre-displacement,
and hardware ray tracing remains the method of choice, even if ac-
curate displacement meshing can be very challenging depending on
the actual UV layout of the base domain. A number of design choices

7

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

in our approach are heavily biased by our application scenario—
dynamic GPU displacement tracing. Nevertheless, we believe that
RMIP could be instrumental in a number of other level-of-detail
problems, including approximation models for physics simulation
and high-resolution geo mapping.

Conclusion. By coupling displacement inversion with range arith-
metic, our method establishes an efficient bidirectional communica-
tion channel between texture space and 3D space, enabling efficient
and ray-dependent texture-space pruning when seeking an inter-
section. As a result, RMIP displacement ray tracing is on average
five times faster than the state of the art at equal image quality.

ACKNOWLEDGMENTS
The authors thank Luc Chamerlat for helping create our beautiful
test scenes, Andréa Machizaud for his reliable assistance with the
renderer, Thomas Caissard for helping with photon mapping, and
the anonymous reviewers for their their useful feedback.

REFERENCES
Amihood Amir, Johannes Fischer, and Moshe Lewenstein. 2007. Two-dimensional range

minimum queries. In Combinatorial Pattern Matching: 18th Annual Symposium, CPM
2007, London, Canada, July 9-11, 2007. Proceedings 18. Springer, 286–294.

Lionel Baboud, Elmar Eisemann, and Hans-Peter Seidel. 2011. Precomputed safety
shapes for efficient and accurate height-field rendering. IEEE transactions on visual-
ization and computer graphics 18, 11 (2011), 1811–1823.

Gerth Stølting Brodal, Pooya Davoodi, and S Srinivasa Rao. 2012. On space efficient
two dimensional range minimum data structures. Algorithmica 63 (2012), 815–830.

Nathan A Carr, Jared Hoberock, Keenan Crane, and John C Hart. 2006. Fast GPU ray
tracing of dynamic meshes using geometry images.. In Graphics Interface, Vol. 2006.
Citeseer, 203–209.

Per H. Christensen, David M. Laur, Julia Fong, Wayne L. Wooten, and Dana
Batali. 2003. Ray Differentials and Multiresolution Geometry Caching
for Distribution Ray Tracing in Complex Scenes. Computer Graphics Fo-
rum 22, 3 (2003), 543–552. https://doi.org/10.1111/1467-8659.t01-1-00702
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00702

Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and William R.
Mark. 2011. Razor: An Architecture for Dynamic Multiresolution Ray Tracing.
ACM Trans. Graph. 30, 5, Article 115 (Oct. 2011), 26 pages. https://doi.org/10.1145/
2019627.2019634

William Donnelly. 2005. Per-pixel displacement mapping with distance functions. GPU
gems 2, 22 (2005), 3.

Jonathan Dummer. 2006. Cone step mapping: An iterative ray-heightfield intersection
algorithm. URL: http://www. lonesock. net/files/ConeStepMapping. pdf 2, 3 (2006), 4.

Johannes Fischer and Volker Heun. 2011. Space-efficient preprocessing schemes for
range minimum queries on static arrays. SIAM J. Comput. 40, 2 (2011), 465–492.

Ned Greene, Michael Kass, and Gavin Miller. 1993. Hierarchical Z-buffer visibility.
In Proceedings of the 20th annual conference on Computer graphics and interactive
techniques. 231–238.

Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch. 2010. Two-Level Ray
Tracing with Reordering for Highly Complex Scenes. In Proceedings of Graphics
Interface 2010 (Ottawa, Ontario, Canada) (GI ’10). Canadian Information Processing
Society, CAN, 145–152.

Takahiro Harada. 2015. Rendering Vector Displacement Mapped Surfaces in a GPU
Ray Tracer. GPU Pro 6: Advanced Rendering Techniques (2015), 459.

John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545.

W. Heidrich and H. Seidel. 1998. Ray-tracing Procedural Displacement Shaders. In
Graphics Interface.

Warren Hunt, William R. Mark, and Don Fussell. 2007. Fast and Lazy Build of Accelera-
tion Structures from Scene Hierarchies. In 2007 IEEE Symposium on Interactive Ray
Tracing. 47–54. https://doi.org/10.1109/RT.2007.4342590

Stefan Jeschke, Stephan Mantler, and Michael Wimmer. 2007. Interactive Smooth
and Curved Shell Mapping. In Proceedings of the 18th Eurographics Conference
on Rendering Techniques (Grenoble, France) (EGSR’07). Eurographics Association,
Goslar, DEU, 351–360.

Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Yasuyuki
Yanagida, Taro Maeda, and Susumu Tachi. 2001. Detailed shape representation with
parallax mapping. In Proceedings of ICAT, Vol. 2001. 205–208.

Khronos. 2020. Vulkan Ray Tracing specification. https://www.khronos.org/blog/vulkan-
ray-tracing-final-specification-release

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: multi-resolution neural materials. ACM Transactions on Graphics
(TOG) 40, 4 (2021), 1–13.

Alexandr Kuznetsov, Xuezheng Wang, Krishna Mullia, Fujun Luan, Zexiang Xu, Milos
Hasan, and Ravi Ramamoorthi. 2022. RenderingNeuralMaterials on Curved Surfaces.
In ACM SIGGRAPH 2022 Conference Proceedings. 1–9.

L. Lee, Shih-Wei Tseng, and W. Tai. 2009. Improved Relief Texture Mapping Using
Minmax Texture. 2009 Fifth International Conference on Image and Graphics (2009),
547–552.

James R Logie and John W. Patterson. 1995. Inverse displacement mapping in the
general case. In Computer Graphics Forum, Vol. 14. Wiley Online Library, 261–273.

Andrea Maggiordomo, Henry Moreton, and Marco Tarini. 2023. Micro-Mesh Construc-
tion. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–18.

Kyoungsu Oh, Hyunwoo Ki, and Cheol-Hi Lee. 2006. Pyramidal displacement mapping:
a gpu based artifacts-free ray tracing through an image pyramid. In Proceedings of
the ACM symposium on Virtual reality software and technology. 75–82.

John W Patterson, Stuart G Hoggar, and James R Logie. 1991. Inverse displacement
mapping. In Computer Graphics Forum, Vol. 10. Wiley Online Library, 129–139.

Fabio Policarpo and Manuel M Oliveira. 2007. Relaxed cone stepping for relief mapping.
GPU gems 3 (2007), 409–428.

Fábio Policarpo, Manuel MOliveira, and João LD Comba. 2005. Real-time relief mapping
on arbitrary polygonal surfaces. In Proceedings of the 2005 symposium on Interactive
3D graphics and games. 155–162.

Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. 2005. Shell Maps.
ACM Trans. Graph. 24, 3 (July 2005), 626–633. https://doi.org/10.1145/1073204.
1073239

V. V. Sanzharov, V. A. Frolov, and V. A. Galaktionov. 2020. Survey of Nvidia RTX
Technology. Program. Comput. Softw. 46, 4 (jul 2020), 297–304. https://doi.org/10.
1134/S0361768820030068

Jeremy Shopf, Joshua Barczak, Christopher Oat, and Natalya Tatarchuk. 2008. March
of the Froblins: simulation and rendering massive crowds of intelligent and detailed
creatures on GPU. In ACM SIGGRAPH 2008 Games. 52–101.

Brian Smits, Peter Shirley, andMichael M Stark. 2000. Direct ray tracing of displacement
mapped triangles. In Eurographics Workshop on Rendering Techniques. Springer, 307–
318.

László Szirmay-Kalos, Tamás Umenhoffer, Gustavo Patow, László Szécsi, and Mateu
Sbert. 2009. Specular effects on the gpu: State of the art. In Computer Graphics
Forum, Vol. 28. Wiley Online Library, 1586–1617.

Natalya Tatarchuk. 2006. Dynamic parallax occlusion mapping with approximate soft
shadows. In Proceedings of the 2006 symposium on Interactive 3D graphics and games.
63–69.

Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. 2008. Maximum mipmaps for fast, accurate,
and scalable dynamic height field rendering. In Proceedings of the 2008 symposium
on Interactive 3D graphics and games. 183–190.

Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur. 2021.
Tessellation-Free Displacement Mapping for Ray Tracing. 40, 6, Article 282 (dec
2021), 16 pages. https://doi.org/10.1145/3478513.3480535

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 1–8.

Beibei Wang, Miloš Hašan, Nicolas Holzschuch, and Ling-Qi Yan. 2020. Example-based
microstructure rendering with constant storage. ACM Transactions on Graphics
(TOG) 39, 5 (2020), 1–12.

Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-
Yeung Shum. 2003. View-dependent displacement mapping. ACM Transactions on
graphics (TOG) 22, 3 (2003), 334–339.

Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum.
2004. Generalized displacement maps. In Proceedings of the Fifteenth Eurographics
conference on Rendering Techniques. 227–233.

Keith Yerex and Martin Jägersand. 2004. Displacement mapping with ray-casting in
hardware.. In SIGGRAPH sketches. 149.

Hao Yuan and Mikhail J Atallah. 2010. Data structures for range minimum queries
in multidimensional arrays. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms. SIAM, 150–160.

8

https://doi.org/10.1111/1467-8659.t01-1-00702
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.t01-1-00702
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1109/RT.2007.4342590
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1134/S0361768820030068
https://doi.org/10.1134/S0361768820030068
https://doi.org/10.1145/3478513.3480535

RMIP: Displacement ray-tracing via inversion and oblong bounding SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Table 1. Performance and memory-footprint comparison between TFDM [Thonat et al. 2021] (serving as a 1× baseline), uniform tessellation, and our method
with three different resolutions for our RMIP structure. For each configurations, the right column compares the data structure memory consumption (lower is
better), and the right column reports render-time speed-ups on GPU (higher is better). Visual comparisons are shown in the supplemental document.

TFDM (1×) Pre-tessellation Our traversalScene #Tri Disp. Tiling
[Thonat et al. 2021] Uniform Low-res. RMIP RMIP High-res. RMIP
Mem. GPU Mem.↓ GPU↑ Mem.↓ GPU↑ Mem.↓ GPU↑ Mem.↓ GPU↑

Alien Sphere 0.9k 2k 6 × 8 21Mb 56ms ×186 ×91 ×0.048 ×2.7 ×1.3 ×3.4 ×30 ×2.7
Basket 4.8k 2k 5 × 5 21Mb 117ms ×235 ×67 ×0.048 ×5.0 ×1.3 ×6.3 ×30 ×5.0
Creature 53k 4k 1 × 1 85Mb 115ms ×40 ×232 ×0.012 ×4.3 ×1.6 ×7.8 ×7.6 ×9.3
Diving Helmet 2.5k 4k 1 × 1 85Mb 33ms ×30 ×95 ×0.012 ×2.5 ×1.6 ×3.0 ×7.6 ×3.5
Medieval Helmet 2.3k 2k 5 × 5 21Mb 42ms ×111 ×93 ×0.048 ×2.5 ×1.3 ×3.2 ×30 ×2.8
Elven Armor 0.8k 4k 2 × 2 85Mb 53ms ×37 ×132 ×0.012 ×2.7 ×1.6 ×3.4 ×7.6 ×4.1
Ninja Head 8.7k 2k 5 × 5 21Mb 182ms ×103 ×340 ×0.048 ×6.1 ×1.3 ×9.2 ×30 ×7.7
Terracotta Roof 128 2k 2 × 2 21Mb 27ms ×97 ×69 ×0.048 ×2.2 ×1.3 ×3.0 ×30 ×2.4
Desert Tire 9k 4k × 3 252, 6 × 1 256Mb 606ms ×10 ×1151 ×0.012 ×6.5 ×0.32 ×11 ×7.6 ×9.6
Glass 2.2k 2k 1 × 1 42Mb 41ms ×51 ×12 ×0.66 ×2.5 ×1.3 ×2.7 ×16 ×2.7

Fig. 8. Offline renders of scenes from Thonat et al. [2021] that we used in our comparisons; left to right, top to bottom: Alien Sphere, Basket, Diving Helmet,
Creature, Medieval Helmet, Elven Armor, Terracotta Roof, and Ninja Head. Base meshes are shown in false color, displacement maps are shown in greyscale.

(a) Final render

#Traversal steps

200

53

14

4

1
(b) TFDM [Thonat et al. 2021] (c) Our RMIP method

Fig. 9. (a) Rendering of two displaced triangles, shown in false color. (b) Number of traversal steps to reach an intersection for primary rays using the method
of Thonat et al. [2021], visualized as a log-scale heat map. The inset reveals the quad-tree nature of their texture-space traversal. (c) Our RMIP traversal
requires on average an order of magnitude fewer iterations; for fairness, we additionally count each texel visited during our texel marching as one traversal
step. Blocky patterns are visible in the inset, revealing the RMIP resolution.

9

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

Fig. 10. Performance of our method at different texel-marching scales on two scenes (left: Elven Armor, GPU; right: Ninja Head, CPU). We show plots for
different RMIP resolutions, and also include a setup with our traversal but computing displacement bounds using a minmax mipmap as in TFDM [Thonat et al.
2021]. We compare against TFDM as a baseline; it does not support texel marching, hence its flat curve. Render times are relative to the best one achieved by
our method (i.e, yellow-curve minimum). The legend includes memory consumption for each data structure relative to the minmax mipmap used by TFDM;
for RMIP we also report resolution in pixels. Fastest marching scale for each setup is highlighted with a bold circle.

Fig. 11. Render-time speed-up of our method with respect to TFDM [Thonat et al. 2021] with equivalent memory consumption, when scaling the displacement
magnitude (left) and tiling (right) beyond those originally used for each scene. Renderings associated to each displacement parameter change are shown on
the sides with the Alien Sphere scene.

Fig. 12. Benefit of using point-wise displacement inversion on all scenes, for different RMIP resolutions. We show relative render time between inversion
enabled and disabled (left: GPU; right: CPU; lower is better).

10

	Abstract
	1 Introduction
	2 Previous work
	3 Our method
	4 Texture-space traversal
	4.1 Point-wise inversion
	4.2 Implicit ray projection
	4.3 Ray-bound tightening
	4.4 Texel marching

	5 RMIP structure
	6 Results
	7 Discussion
	Acknowledgments
	References

