
RMIP: Displacement ray-tracing via inversion and oblong bounding
Supplemental document

THÉO THONAT, Adobe, France
ILIYAN GEORGIEV, Adobe, UK
FRANÇOIS BEAUNE, Adobe, France
TAMY BOUBEKEUR, Adobe, France

In this supplemental document we provide additional details on several

components of our method, namely about the RMIP data structure and the

per-triangle bounding prisms.

1 RMIP
In the main document, we introduce the RMIP data structure as

an array of 2D grids that answers minmax queries over rectangle

ranges of an input discrete grid. We detail here how to extend it so

it provides bounds for an input texture equipped with interpolation,

tiling, and level of details. We also detail how to reduce the RMIP

memory footprint so it is similar to a traditional mipmap, and show

how to precompute the structure.

1.1 Extension to textures
The RMIP structure described so far only deals with discrete grids

of values. We present here how to extend it to compute bounds

in a displacement mapping context, with continuous interpolation,

tiling, and multi-scale filtering.

Displacement interpolation. Going from a continuous displace-

ment signal to a discrete 2D grid in a conservative fashion is straight-

forward by computing a conservativeminmax over each pixel region.

For example with bilinear interpolation, we find the four bilinear

patches that overlap one pixel of the output minmax, and aggregate

bounds from each patch.

Tiling. We address queries that wrap around the input texture by

pre-computing additional queries. Assuming an𝑁 ×𝑁 resolution for

the RMIP, the 𝐻
𝑝,𝑞
𝑥,𝑦 values with 𝑁 − 2𝑝 < 𝑥 < 𝑁 or 𝑁 − 2𝑞 < 𝑦 < 𝑁 ,

which were unused so far as the corresponding query rectangle

was crossing the grid boundaries, can now be computed assuming

a repeating texture.

Level of detail. As noted by Thonat et al. [2021], minmax mipmaps

do not directly provide bounds for pre-filtered versions of its in-

put. They addressed this issue by making each texel of the minmax

mipmap storing bounds over multiple input mip levels, thus degrad-

ing a bit the bounds tightness. For our RMIP, we take a different

approach by computing a RMIP independently for each of the in-

put mipmap levels. However, since the number of array layers is

(1+ log
2
𝑁)2, each mip level has a different layer count, which is not

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in SIGGRAPH Asia
2023 Conference Papers (SA Conference Papers ’23), December 12–15, 2023, Sydney, NSW,
Australia, https://doi.org/10.1145/3610548.3618182.

Algorithm 1. RMIP precomputation for one mip level of an input displace-
ment textureℎ. Each output texture array layer𝐻𝑝,𝑞 has an𝑁×𝑁 resolution.
The RMQ function is the one defined in Equation 5. in the main document.

1: function ComputeRMIP(ℎ)

2: 𝐻 0,0 = blockwise minmax(ℎ)
3: for 0 ≤ 𝑞 ≤ log

2
𝑁 do

4: for 0 ≤ 𝑝 < log
2
𝑁, 0 ≤ 𝑦 ≤ 𝑁 − 2

𝑞, 0 ≤ 𝑥 ≤ 𝑁 − 2
𝑝+1 do

5: 𝐻
𝑝+1,𝑞
𝑥,𝑦 = minmax

(
𝐻

𝑝,𝑞
𝑥,𝑦 , 𝐻

𝑝,𝑞

𝑥+2𝑝 ,𝑦

)
← Merge bounds along 𝑥

6: if 𝑞 < log
2
𝑁 then

7: for 0 ≤ 𝑦 ≤ 𝑁 − 2
𝑞+1, 0 ≤ 𝑥 ≤ 𝑁 − 1 do

8: 𝐻
0,𝑞+1
𝑥,𝑦 = minmax

(
𝐻

0,𝑞
𝑥,𝑦, 𝐻

0,𝑞

𝑥,𝑦+2𝑞
)
← Merge bounds along 𝑦

9: for 0 ≤ 𝑞 ≤ log
2
𝑁, 0 ≤ 𝑝 ≤ log

2
𝑁 do

10: for 0 ≤ 𝑦0 < 𝑁, 0 ≤ 𝑥0 < 𝑁 do
11: if 𝑥0 ≤ 𝑁 − 2

𝑝 and 𝑦0 ≤ 𝑁 − 2
𝑞 then

12: continue ← Those dont wrap around the texture

13: if 𝑥0 + 2𝑝 > 𝑁 then ← Split the 𝑥 range into two ranges

14: 𝑤0 = 𝑁 − 𝑥0, 𝑥1 = 0, 𝑤1 = 𝑥0 + 2𝑝 − 𝑁

15: else ← Otherwise just duplicate the 𝑥 range

16: 𝑥1 = 𝑥0, 𝑤1 = 𝑤0 = 2
𝑝

17: if 𝑦0 + 2𝑞 > 𝑁 then ← Split the 𝑦 range into two ranges

18: ℎ0 = 𝑁 − 𝑦0, 𝑦1 = 0, ℎ1 = 𝑦0 + 2𝑞 − 𝑁

19: else ← Otherwise just duplicate the 𝑦 range

20: 𝑦1 = 𝑦0, ℎ1 = ℎ0 = 2
𝑞

21: 𝑏1 = RMQ(𝑥0, 𝑦0, 𝑤0, ℎ0)
22: 𝑏2 = RMQ(𝑥1, 𝑦0, 𝑤1, ℎ0)
23: 𝑏3 = RMQ(𝑥0, 𝑦1, 𝑤0, ℎ1)
24: 𝑏4 = RMQ(𝑥1, 𝑦1, 𝑤1, ℎ1)
25: 𝐻

𝑝,𝑞
𝑥,𝑦 = minmax(𝑏1, 𝑏2, 𝑏3, 𝑏4)

26: return 𝐻

suitable for sampling fractional LOD using the hardware. Therefore,

we fill the whole mip hierarchy by carefully copying layers within

the same mip level, in a way that the minmax region associated to

an 𝑢𝑣 at a LoD 𝑘 is always a subset of the minmax region for the

same 𝑢𝑣 at the LoD 𝑘 + 1 (see the main document for the resulting

layout).

1.2 Linear memory footprint
While the RMIP described so far gives tight and efficient bounds

for displacement RMQs, its 𝑁 2 (1 + log2
2
𝑁) memory footprint is too

prohibitive to be practical for high resolution displacement maps.

However, since we only need conservative displacement bounds, we

can sacrifice some tightness to reduce the RMIP resolution so that its

1

HTTPS://ORCID.ORG/0000-0001-5522-363X
HTTPS://ORCID.ORG/0000-0002-9655-2138
HTTPS://ORCID.ORG/0009-0005-6788-3877
HTTPS://ORCID.ORG/0000-0001-5985-0921
https://doi.org/10.1145/3610548.3618182

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

memory footprint becomes similar to minmax mipmaps. As we can-

not easily compress the RMIP, the only parameter we can act upon

is the resolution of the input displacement map. More precisely, we

look for a down scale resolution 𝑅 such that its associated RMIP con-

tains only 𝑁 2
values. This leads to the equation 𝑅 · (1+ log

2
𝑅) = 𝑁 ,

whose solution is given by 𝑅 = 1

2
exp(𝑊0 (𝑁 log 4)) ∼ 𝑁 / log

2
𝑁 ,

where𝑊0 is Lambert’s W function’s principal branch. The down-

scale of the input displacement is done conservatively, computing

minmax over pixel blocks of size 𝐵 = 𝑁 / 𝑅 ∼ log
2
𝑁 .

1.3 Precomputation
We present in this section the RMIP data structure precomputation,

with pseudo code shown in Alg. 1. The computation is done in

three passes. First the input texture is conservatively scaled down to

the RMIP resolution by computing minmax over pixel blocks. The

non-wrapping queries are then computed iteratively by combining

bounds along one dimension at a time. This relies on the fact that

a rectangle with a power-of-two size can be decomposed into two

smaller non-overlapping sub rectangles with also a power-of-two

size. Finally, the wrapping queries are computed by decomposing

them into up to four non-wrapping sub queries, splitting the query

at the texture boundary. As these sub queries do not have a power-

of-two size, they need to be computed on the fly using already

precomputed RMIP entries from the second pass.

For hardware LoD support, the above pre-computation can be

independently applied to each mip level of the input texture to fill

each mip level of the RMIP structure. Then, since the number of

texture array layers varies for each mip level, several layers have

to be copied to fill the remaining empty array layers (see Figure 6

in the main document). More specifically, for any mip level 𝑖 with

1 ≤ 𝑖 ≤ log
2
𝑁 , every array layer 𝐻𝑝,𝑞

with 𝑝 > log
2
𝑁 − 𝑖 or

𝑞 > log
2
𝑁 − 𝑖 gets filled using 𝐻min(𝑝,log

2
𝑁−𝑖),min(𝑞,log

2
𝑁−𝑖)

from

the same mip level.

2 BOUNDING PRISM
Our bounding prism is made of two triangles and three bilinear

patches. The triangles are computed by offsetting the base triangle

along the vertex normals as we detail below. To intersect the prism

we use the routines of Möller and Trumbore [2005] and Reshetov

[2019], respectively. Intersections, including the ray starting point if

inside the prism, are first sorted front to back, then grouped by pairs

to form non overlapping intervals in 3D, that are finally projected

into texture space to form the initial 2D bounds stack.

Following the displacement mapping equation, bounding prisms

can be constructed considering the set

{𝑃 (𝑢, 𝑣) + 𝑠𝑁 (𝑢, 𝑣), (𝑢, 𝑣) ∈ T , 𝑠 ∈ [𝑠min, 𝑠max]}
which fully contains the displace surface when

𝑠min = min

T
ℎ(𝑢, 𝑣)
|𝑁 (𝑢, 𝑣) | ≥ min

©«
min

T
ℎ(𝑢, 𝑣)

min

T
|𝑁 (𝑢, 𝑣) | ,

min

T
ℎ(𝑢, 𝑣)

max

T
|𝑁 (𝑢, 𝑣) |

ª®¬
and

𝑠max = max

T
ℎ(𝑢, 𝑣)
|𝑁 (𝑢, 𝑣) | ≤ max

©«
max

T
ℎ(𝑢, 𝑣)

min

T
|𝑁 (𝑢, 𝑣) | ,

max

T
ℎ(𝑢, 𝑣)

max

T
|𝑁 (𝑢, 𝑣) |

ª®¬

A tight bounding prism can therefore be obtained by computing

displacement bounds and interpolated normal norm bounds over the

base triangle. Conservative displacement bounds can be obtained for

example using the RMIP data structure with a 2D bounding box of

the base triangle in texture space, or using a minmax mipmap using

the routine described by Thonat et al. [2021]. For the interpolated

normal, assuming the three vertex normals n𝑖 are normalized, the

optimal upper bound is max

T
|𝑁 (𝑢, 𝑣) | = 1. For the lower bound, we

need to minimize the following function:

min

𝑢,𝑣∈T
|𝑁 (𝑢, 𝑣) |2 = min

𝑢,𝑣∈T
|𝑢n1 + 𝑣n2 + (1 − 𝑢 − 𝑣)n3 |2 (1)

Since T is compact and |𝑁 |2 is 𝐶1
, |𝑁 |2 has a minimum on T that

is either reached on the interior of T where 𝐽 |𝑁 |2 = 0, or on the

boundary of T . Computing the Jacobian gives:

𝐽 |𝑁 |2 (𝑢0, 𝑣0) = 0⇔

Gramian(n1 − n3, n2 − n3)
[
𝑢0
𝑣0

]
= −

[
n3 · (n1 − n3)
n3 · (n2 − n3)

]
(2)

If | (n1−n3)× (n2−n3) | ≠ 0, Gramian(n1−n3, n2−n3) is positive-
definite. Eq. (2) has a solution (𝑢0, 𝑣0), and if it is inside T , our lower
bound ismin

T
|𝑁 (𝑢, 𝑣) | = |𝑁 (𝑢0, 𝑣0) |. Otherwise, the minimum is on

the triangle boundary and we have:

min

𝑢,𝑣∈T
|𝑁 (𝑢, 𝑣) |2 =min

𝑖≠𝑗
min

0≤𝜆≤1
| (1 − 𝜆)ni + 𝜆nj |2

=min

𝑖≠𝑗

����1
2

(
ni + nj

) ����2
=
1

2

(1 +min (n1 · n2, n1 · n3, n2 · n3))

3 IMPLEMENTATION DETAILS
Inverse displacement. Inverting displacement for a 3D point X

mean finding texture parameters 𝑢, 𝑣 such that:

f (𝑢, 𝑣) = (P(𝑢, 𝑣) − X) × N(𝑢, 𝑣) = 0, (3)

where P and N are respectively the linearly interpolated base po-

sition and normal. We solve the above equation using Newton’s

method, as the Jacobian of f has a simple expression:

𝐽f (𝑢, 𝑣) =
[
𝜕f
𝜕𝑢

,
𝜕f
𝜕𝑣

]
=

[
𝜕P
𝜕𝑢 × N + (P − X) ×

𝜕N
𝜕𝑢

𝜕P
𝜕𝑣 × N + (P − X) ×

𝜕N
𝜕𝑣

]𝑇
, (4)

where partial derivatives for base position and normal are constant

per base triangle. We stop the iterative process when the update

value has a norm less than 10
−5
, with a maximum of 10 iterations.

Regarding the initialization, there are two scenarios for choosing

the starting point. For points on the bounding prism, we use the

base triangle center in texture space. For points on the bounding

boxes that are computed during traversal, we use the center of the

current 2D bound. Since 2D bounds get tighter during the traversal,

the starting point gets closer to the solution, making the inversion

computational cost diminish with traversal depth.

Traversal stack. Our traversal relies on a stack of 2D bounds of

the ray in texture space, as shown in Algorithm 1 in the main docu-

ment. We use a maximum stack size of 17. As at most two bounds

are pushed per loop iteration, with the last bound inserted being

2

RMIP: Displacement ray tracing via inversion and oblong bounding (supplemental document) SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

always popped at the next iteration, this stack size corresponds to a

maximum traversal depth of 16. Our splitting halves the 2D bounds

in their largest dimension at each split, so this stack size allows to

cover a region of at least 2
16 ·𝑚2

pixels, where𝑚 is the marching

scale. Note that this is a very conservative estimate, because most

bounds get discarded right after the 3D bounds intersection test. In

practice, we never reach the stack limit even with a marching scale

of 1 and 4𝑘 maps tiled multiple times over the same base triangle.

REFERENCES
TomasMöller and Ben Trumbore. 2005. Fast, minimum storage ray/triangle intersection.

In ACM SIGGRAPH 2005 Courses. 7–es.
Alexander Reshetov. 2019. Cool patches: A geometric approach to ray/bilinear patch

intersections. Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR
and Other APIs (2019), 95–109.

Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur. 2021.

Tessellation-Free Displacement Mapping for Ray Tracing. 40, 6, Article 282 (dec

2021), 16 pages. https://doi.org/10.1145/3478513.3480535

3

https://doi.org/10.1145/3478513.3480535

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Théo Thonat, Iliyan Georgiev, François Beaune, and Tamy Boubekeur

Fig. 1. Visual comparison between our method (left images), TFDM [Thonat et al. 2021] (middle images), and uniform pre-tessellation (right images).

4

RMIP: Displacement ray tracing via inversion and oblong bounding (supplemental document) SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Table 1. Performance and memory-footprint comparison between TFDM [Thonat et al. 2021] (serving as a 1× baseline), uniform tessellation, and our method
with three different resolutions for our RMIP structure. For each configurations, the right column compares the data structure memory consumption (lower is
better), and the right column reports render-time speed-ups on CPU (higher is better).

TFDM (1×) Pre-tessellation Our traversalScene #Tri Disp. Tiling
[Thonat et al. 2021] Uniform Low-res. RMIP RMIP High-res. RMIP
Mem. CPU Mem.↓ CPU↑ Mem.↓ CPU↑ Mem.↓ CPU↑ Mem.↓ CPU↑

Alien Sphere 0.9k 2k 6 × 8 21Mb 123ms ×124 ×16 ×0.048 ×1.5 ×1.3 ×2.0 ×30 ×1.6
Basket 4.8k 2k 5 × 5 21Mb 155ms ×157 ×18 ×0.048 ×1.9 ×1.3 ×2.5 ×30 ×2.0
Creature 53k 4k 1 × 1 85Mb 131ms ×27 ×21 ×0.012 ×1.9 ×1.6 ×3.5 ×7.6 ×3.8
Diving Helmet 2.5k 4k 1 × 1 85Mb 43ms ×21 ×11 ×0.012 ×1.3 ×1.6 ×1.6 ×7.6 ×1.7
Medieval Helmet 2.3k 2k 5 × 5 21Mb 45ms ×74 ×11 ×0.048 ×1.2 ×1.3 ×1.6 ×30 ×1.3
Elven Armor 0.8k 4k 2 × 2 85Mb 79ms ×25 ×15 ×0.012 ×1.1 ×1.6 ×1.4 ×7.6 ×1.5
Ninja Head 8.7k 2k 5 × 5 21Mb 226ms ×70 ×39 ×0.048 ×2.2 ×1.3 ×3.6 ×30 ×2.7
Terracotta Roof 128 2k 2 × 2 21Mb 46ms ×66 ×10 ×0.048 ×1.1 ×1.3 ×1.6 ×30 ×1.2
Desert Tire 9k 4k × 3 25

2
, 6 × 1 256Mb 2948ms ×6.5 ×284 ×0.012 ×5.4 ×1.6 ×8.4 ×7.6 ×8.8

5

	Abstract
	1 RMIP
	1.1 Extension to textures
	1.2 Linear memory footprint
	1.3 Precomputation

	2 Bounding prism
	3 Implementation details
	References

