
To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

RTSG: Ray Tracing for X3D via a Flexible Rendering Framework

Dmitri Rubinstein∗

Saarland University
DFKI Saarbrücken

Iliyan Georgiev∗

Saarland University
Benjamin Schug∗

Saarland University
Philipp Slusallek∗

Saarland University
DFKI Saarbrücken

Figure 1: Scenes rendered interactively with RTSG using ray tracing with shadows, reflection, and refraction. Left: Beetles (2.4 mln
triangles, 4.1 FPS). Middle: Venice (1.2 mln triangles, 5.6 FPS). Right: BART Kitchen (108,000 triangles, 1.9 FPS).

Abstract

VRML and X3D are the most widely adopted standards for inter-
active 3D content interchange. However, they are both designed
around the common restricted functionality available in hardware
graphics processors. Thus, most existing scene graph implemen-
tations are tightly integrated with rasterization APIs, which have
difficulties simulating advanced global lighting effects.

Conversely, complex photo-realistic effects are naturally supported
by ray tracing based rendering algorithms [Glassner 1989]. Due to
recent research advances and the constantly increasing computing
power of commodity PCs, ray tracing is emerging as an interesting
alternative for interactive applications.

In this paper we present RTSG (Real-Time Scene Graph), a flexible
scene management and rendering system. RTSG is X3D-compliant
and has been designed to efficiently support both ray tracing and
rasterization using a backend-independent rendering infrastructure.
We describe two ray tracing and one rasterization backends and
demonstrate that they achieve real-time rendering performance.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.3.4 [Computer Graphics]:
Graphics Utilities—Application packages, Graphics packages;

Keywords: X3D, VRML, scene graph, ray tracing, interactive

1 Introduction

Since its first publication in 1994, the VRML standard has under-
gone numerous enhancements to eventually become X3D. What

∗e-mail: {rubinstein, georgiev, bschug, slusallek}@cs.uni-sb.de

started as an idea of a third dimension for the world wide web
limited to static scenes, is today a powerful platform for creation
and deployment of highly dynamic three-dimensional applications.
X3D is used for 3D scene interchange, interactive user manuals,
simulation, and other applications. Its ability to deliver 3D content
over the internet is now just one of its many features.

This is a result of the tremendous improvements in technology over
the past decade. Today’s commodity PCs have powerful multi-core
CPUs with gigabytes of memory and have broadband connection to
the internet. Most of the limitations of the original VRML standard
have lost their justification over time and have pushed the develop-
ment of the X3D standard to its current form.

Surprisingly, on the other hand, the visual appearance model of the
X3D standard has not changed much since VRML 1.0. The only
added feature has been the support for user-defined shaders sup-
ported by currently available rasterization APIs. Using shaders, de-
signers can implement custom lightning algorithms to tweak the
visual appearance of scenes. However, producing photo-realistic
images is quite hard with rasterization, which is the basis of the
rendering infrastructure in the X3D standard. This is further com-
plicated by many incompatible shading languages and technical is-
sues, such as the need for multi-pass rendering.

Because rasterization algorithms render each primitive indepen-
dently, only local illumination information is available in a single
rendering pass. As a result, even basic optical effects, such as re-
flection or shadows, require multiple rendering passes. For exam-
ple, in order to simulate reflections, one must first render the com-
plete scene from the view of each reflective surface and then from
the camera view. While it is possible to support this in X3D, it vi-
olates its descriptive approach and causes numerous complications.
Furthermore, such technique is not accurate for curved reflective
surfaces, ignores inter-reflections, and must be performed each an-
imation frame in the case of object changes.

For producing images with a high degree of photo-realism, ray trac-
ing based algorithms are often used. This is due to the fact that
ray tracing closely models physical light transport by simulating
light propagation in the scene. This approach naturally supports
secondary lighting effects, such as reflection and refraction. How-
ever, ray tracing usually requires much more processing time than

1



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

rasterization to produce an image. Thus, it has been traditionally
used mostly for offline rendering where image quality is crucial and
longer rendering times are more tolerable.

The above mentioned technological advances have also influenced
ray tracing. Recent advances in research and hardware have enabled
ray tracing to achieve real-time performance [Wald et al. 2001;
Reshetov et al. 2005; Wald et al. 2007]. These works have made
ray tracing an interesting alternative to rasterization for interactive
applications, due to its superior image quality, physical realism, and
ease of use. Ray tracing and its descriptive approach to scene ren-
dering are a perfect match for X3D. The renderer can automatically
generate accurate images, without further help by the designer.

In this paper we describe the design of our X3D-based scene graph
library RTSG. It has been built to support interactive rendering us-
ing ray tracing. The flexible infrastructure for partial scene updates
allows RTSG to efficiently handle large scenes, which is crucial for
ray tracing applications. Furthermore, a backend-independent ren-
dering infrastructure also allows for fast vizualization using tradi-
tional rasterization. We describe two ray tracing and one rasteriza-
tion backends and demonstrate interactive performance competitive
to or even surpassing existing VRML/X3D browsers.

2 Related Work

The X3D [X3D 2004b] standard defines a hierarchical description
containing all objects in a scene and their parameters, such as loca-
tion or appearance. It represents a descriptive data model and can
be used to exchange 3D models between different applications. The
standard also specifies a run-time environment that defines how ob-
jects respond to user input and how they interact with each other.
The run-time environment and the scene description together al-
low to interactively display the X3D scene. The standard does not
specify how the scene should be rendered but only defines the ap-
pearance and the behavior of the objects in it at an abstract level.

X3D implementations typically map the standard to a scene graph
library such as OpenInventor [Wernecke 1994], Performer [Rohlf
and Helman 1994], OpenSG [Reiners et al. 2002], or OpenScene-
Graph [OSG 1999]. Such scene graphs use a rasterization-based
rendering pipeline, which typically consists of following three
stages [Rohlf and Helman 1994; Akenine-Möller and Haines 2002]:

• APP
In this stage the application logic is executed, which may re-
sult in modifying, adding, deleting, and moving objects, pro-
cessing sensors, etc.

• CULL
The scene graph is traversed and all potentially visible por-
tions of the geometry are prepared for rendering.

• DRAW
The geometry prepared in the previous stage is visualized on
the screen by issuing graphics API commands.

Often the CULL and DRAW stages are performed in a single com-
bined traversal step after the application logic for one frame has
been executed. Even in this case the scene graph needs to be tra-
versed at least once for each frame in order to visit all nodes that
may have been changed. This full traversal is necessary when im-
mediate drawing mode is used for the underlying low-level graphics
API. In this approach, the full state of the scene graph is sent to the
graphics card every frame, even when the changes are minimal.

However, the preferred way of using current graphics hardware is
in retained mode, where a partial or even the full state of the scene
is stored in GPU memory. This removes the need for sending static

geometry to the GPU each frame, which can greatly reduce the
bandwidth requirements. In retained mode, only the minimal set
of changes per frame needs to be uploaded to the GPU in order to
synchronize the X3D scene with the data on the graphics card.

Most existing X3D systems implement the actual rendering in the
DRAW stage by adding a virtual rendering method to every scene
graph node. This method is called during scene graph traversal
and issues low-level graphics API commands that create or update
the geometry or the appearance of objects. Such approach works
only when a single rendering algorithm is used, respectively a sin-
gle rendering API, and rendering optimizations in the scene graph
often take into account specific properties of both. However, opti-
mizations that make sense for rasterization can be meaningless for
ray tracing. For example, state sorting, which is often performed by
scene graph implementations, is not needed for ray tracing.

One possible solution to the problem above is to use a double dis-
patch mechanism, which selects the rendering code not only by the
type of the node but also by the type of the rendering method. Open-
Inventor [Wernecke 1994] provides such functionality by storing a
list of callback functions per traversal type, which allows for regis-
tering functions for new node types and for overriding the existing
ones. Thus, all rendering functionality can be moved entirely into
the DRAW traversal. Functionality for rendering new nodes can still
be added by simply registering their types with the DRAW traversal.
However, OpenInventor still performs a full traversal of the scene
graph from top to bottom for every frame, which is problematic
for complex scenes and especially for ray tracing, which needs to
maintain optimized prebuilt acceleration structures.

Another alternative to adding a rendering method to every X3D
node is the approach used by Avalon [Behr and Fröhlich 1998],
where the X3D scene graph is not used directly for rendering. In-
stead, an OpenSG [Reiners et al. 2002] backend scene graph is cre-
ated which also performs rendering-depended optimizations. How-
ever, OpenSG has exactly the same issues as just discussed.

VrmlRT [Dietrich et al. 2004] was the first implementation of a
VRML scene graph with support for ray tracing. It took the same
approach as rasterization-based scene graphs and thus was also re-
stricted to one rendering algorithm, namely ray tracing. VrmlRT
suffered from too much runtime overhead when animations were
present in the scene, which resulted in low rendering performance.
The reason for this overhead was that like all existing scene graph
implementations VrmlRT was optimized to use a specific render-
ing API and was not designed to allow incremental scene updates,
when small or local changes happened somewhere in the graph. It
performed complete re-traversals of the entire graph at each frame
to find changes, which can be quite costly for more complex scenes.

3 RTSG

RTSG has been designed with three major concepts in mind: mod-
ularity, rendering backend independence, and optimal speed. Fig-
ure 2 gives an overview of the system components. The main com-
ponent of RTSG is the core library, which implements the scene
graph, event management, and prototypes, as specified by the X3D
standard. Additionally, it implements an extensibility infrastruc-
ture. Based on the core, different sets of nodes implement the scene
representation. X3D and its extensions are one such set of nodes.

The application has access to renderer plugins. Each plugin consists
of a library which connects our X3D scene graph with an actual
rendering API. We have developed two ray tracing plugins based
on the OpenRT [Dietrich et al. 2003] and RTfact [Georgiev and
Slusallek 2008] ray tracing frameworks. We have also implemented
a rasterization plugin based on th OGRE [OGR 2000] engine.

2



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

VRML/X3D Node Set
Node Set Library

RTfact
Ray Tracing API

OpenRT
Ray Tracing API

OpenGL
Rasterization API

DirectX
Rasterization API

OGRE
Rasterization Scene Graph

RTSG
Core Library

Application

RTSG/OGRE
Rendering Library

RTSG/RTfact
Rendering Library

RTSG/OpenRT
Rendering Library

Figure 2: Overview of RTSG: The application uses the RTSG core
and specific nodes to describe the scene. Independently, it creates,
configures, and attaches one or more renderers to the scene that
read the nodes’ data and render it to a device or memory buffer.

3.1 RTSG Core

The basis of our scene graph implementation is the RTSG core li-
brary. This library implements general concepts needed for the im-
plementation of VRML and X3D and provides most of the func-
tionality described in the “Concepts”, “Field Type Reference”, and
“Core Component” chapters of the X3D standard. The idea be-
hind this organization is reducing the VRML and X3D standards
to a minimal set of required functionality, and then implementing
remaining parts of the standards as extensions and plugins.

The RTSG core defines a high-level concept of a scene graph and
provides only the basic features of the X3D standard, such as nodes,
single and multi-value fields, event routing, and prototypes. In con-
trast to many other X3D implementations, the core library does not
define any specific node hierarchy. It provides only a basic node
class and a tool for generating the code for node class skeletons
from the VRML and X3D specifications. Additionally, the user can
define new field types not included in the standard. This function-
ality is inspired by OpenInventor [Wernecke 1994], but is often not
available in other X3D implementations. This allows the developer
to easily extend library with application specific functionality, and
quickly support the growing X3D standard.

For input and output of X3D scenes the core library provides an
I/O infrastructure which is inspired by the Xj3D [Xj3 2006] X3D
browser and is similar to the SAX API for XML parsing. Scene
reader components produce a sequence of commands, such as
beginDocument, beginNode, and endNode, instead of di-
rectly constructing a scene graph. Scene writer classes produce
from this sequence a document in arbitrary format (e.g. VRML,
X3D, or compressed binary encoding). The scene constructor com-
ponent constructs an actual scene from the command sequence, and
the scene exporter creates a command stream from an already con-
structed scene. Also available are scene processing and filtering
components which can modify the stream by e.g. adding, deleting
and modifying nodes, their names, types, or parameters.

By separating input, output, and scene construction operations into
different components, we are able to configure them into various
scene processing pipelines. For example, we can convert one X3D
representation to another by simply connecting the scene reader
from one format to the scene writer that outputs a different for-
mat. For this operation no actual scene graph is constructed and

only a minimal fixed amount of memory is required. Additionally,
this approach allows us to easily support new file format readers
and writers in our system without modifying the core library.

The RTSG core library also provides a well defined C++ API,
modeled according to the X3D SAI specification [x3d 2004a].
We support functionality for registering listeners specified by the
registerFieldInterest service defined in the X3D SAI.
Additionally to listeners for node fields, RTSG allows registering
multiple listeners with every node. These listeners will be reported
changes in the fields of the nodes, as well as when a node is re-
moved from or added to the scene graph. This feature is crucial for
our optimized rendering support.

3.2 VRML/X3D Node Set

The VRML extension library implements a node hierarchy set ac-
cording to the “Architecture and base components” part of ISO X3D
standard. However, the node classes do not contain any rendering-
dependent code. Instead, they only provide code responsible for the
non-rendering semantics. This structure allows the VRML/X3D ex-
tension library to be used with any rendering algorithm.

4 Rendering with RTSG

As already discussed in Section 2, the traditional rendering
pipeline, which performs full scene traversal at each frame, is of-
ten not efficient for graphics libraries that operate in retained mode.
For such backends, frequent traversal of big parts of the graph may
become a bottleneck, especially for large scenes where only small
parts change over time. This particularly holds for all ray tracing
based renderers, as they always work in retained mode. The ge-
ometry and material database of ray tracers is usually created only
once and is then continuously updated.

The core of RTSG does not define a fixed rendering pipeline, but
instead relies on plugins to control the rendering process. The mo-
tivation behind this is that the plugin for some specific rendering
algorithm knows the most efficient way to handle changes in the
scene graph. Usually, in RTSG a renderer plugin is notified for
each change taking place in the APP simulation stage. The ren-
derer may directly propagate the changes to the rendering backend
or collect and process them in one step only when the next frame is
to be rendered.

The traditional pipeline can be implemented in RTSG simply as
a renderer plugin that does not register any listeners, but instead
performs full scene graph traversal after the APP simulation stage.

In the following subsections we describe the rendering infrastruc-
ture of RTSG in more detail.

4.1 EXTRA : EXTensible Rendering Architecture

The rendering loop used by RTSG-based applications looks similar
to the traditional rendering pipeline and is illustrated in Listing 1.
After the scene has been loaded, one or more renderers are created
and attached to it. The call to newFrame of the Scene class cor-
responds to the APP stage, described in Section 2, and performs
the propagation of X3D events. The CULL stage is specific to the
traditional rasterization pipelines and is thus part of a concrete ren-
derer implementation and not of the application. The same also
holds for the DRAW stage, as the renderer itself decides when to
actually send commands to the rendering backend. The application
only notifies the renderer with a call to renderFrame when the
simulation stage has finished, so that the current state of the scene
graph can be presented to the user.

3



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

// load and initialize the VRML/X3D scene
Scene* scene = new Scene;
scene->readFromURL(url);
scene->initialize(getCurrentTime());

// create and attach a renderer to the scene
Renderer* renderer = new MyRenderer();
renderer->attachToScene(scene);

// rendering loop
while (doRender)
{

// perform VRML/X3D event propagation (APP stage)
scene->newFrame(getCurrentTime());

// display the current frame to the output device
renderer->renderFrame();

}

Listing 1: Pseudo code for scene creation and rendering with
RTSG.

Note that we use the term “rendering” in a very broad sense here.
While it typically refers only to visual rendering, exactly the same
approach can be used for acoustic rendering, haptics, or even gen-
eral processing of the scene data. This approach is also ideally
suited for synchronizing one X3D scene with another by stream-
ing the changes to another machine/scene.

4.1.1 Customization of the Rendering Code

When implementing a custom renderer plugin, one can override
the attachToScene and renderFrame methods of the base
Renderer class. Both methods can initiate a full or partial
scene graph traversal using the default implementations of the
renderScene, renderNode, or renderNodes methods of
the Renderer class. The first argument to these three methods
specifies the requested target – the whole scene, a single node, or
a list of nodes. The second argument is a so-called rendering op-
eration, which describes how the target should be processed. The
rendering operation is always specific to the renderer implemen-
tation and can be used to perform different tasks on a single or
multiple nodes. For simplifying the implementation of rendering
operations, we provide utility classes that can generate vertex, nor-
mal, color and other arrays from the standard geometry nodes, such
as IndexedFaceSet, Box, Sphere, etc.

When called with the scene or a node list, the rendering method ap-
plies the request to each node contained in the list, respectively to
each scene root node. When called with a single node, the rendering
method tries to find a so-called node renderer that is responsible for
handling the specific node type. If such node renderer has been reg-
istered with the rendering plugin, the request is delegated to it. Oth-
erwise, the node’s own render method is invoked. This approach
is similar to the one used by OpenInventor [Wernecke 1994].

The described customization of the rendering functionality can be
viewed as a message passing model, with the rendering operation
being the message. One can also define operations for tasks other
than rendering. Note that an actual partial or full traversal is per-
formed only as a side effect when rendering methods propagate the
rendering operation down the scene graph.

By overriding the rendering methods one can have single or double
dispatch strategies depending on both the node and renderer types:

• Single dispatch on the type of the node is done by overload-
ing the virtual render method of the Node base class. This

can be done for nodes where only a single rendering scheme
makes sense, e.g. rendering architecture dependent nodes.

• Single dispatch on the type of the renderer class can be
achieved by including the necessary code directly into the cus-
tom renderer plugin class by overriding its renderFrame
and renderNode methods of the base Renderer class.
This is useful when some common operations need to be per-
formed either for each frame or for all node types.

• Double dispatch on the type of the node and the renderer
class is the most flexible way of rendering a single or multi-
ple nodes specific to one rendering backend. Node renderers
can be loaded and registered at run-time and override existing
rendering functionality inside the node classes.

4.1.2 Event Driven Handling of Scene Changes

In the previous subsection we described how the rendering loop in
Listing 1 can be customized by overriding the attachToScene
and renderFrame methods of the Renderer class. However,
because attachToScene is called before any changes have taken
place and renderFrame is called always after the scene has
changed, full scene graph traversal would still need to be performed
in order to detect and propagate all changes. In order to avoid this,
we use the infrastructure of the RTSG core library for registering
listeners for possible changes in the scene. These listeners are
called directly upon changes in the newFrame method (i.e. dur-
ing the APP stage) or any other manipulation of the scene graph
by the application. They can either directly update the state in the
rendering backend by sending rendering operations or record the
changes for later processing.

For ray tracing and other retained mode rendering backends, as well
as backends that maintain internal scene graphs of their own (e.g.
OpenSG or OGRE), one would create the backend scene graph in
the renderer’s attachToScenemethod. Additionally, one would
register listeners with all nodes which may be modified in the X3D
scene, potentially all. In order to detect modifiable nodes, the rout-
ing graph and the Script nodes of the scene can be analyzed.

An important feature of EXTRA is that it allows using multiple
rendering techniques simultaneously. For example, one could have
multiple types of renderer plugins (visual, audio, haptics) that out-
put to different devices. As another example, a hybrid rendering
approach may combine rasterization and ray tracing, which may
require multiple rendering passes, where the different rendering al-
gorithms need to inter-communicate. This would not be possible if
all rendering code would be placed inside the node classes.

5 Applications

In this section we present specific applications of RTSG for real-
time rendering using different rendering algorithms and backends.
We have implemented renderer plugins for two ray tracing and one
rasterization based graphics libraries.

5.1 Ray tracing

Ray tracing has been originally introduced as a method for realistic
rendering of three-dimensional scenes [Appel 1968]. In the classic
recursive ray tracing [Whitted 1980], primary rays are first traced
through the camera to determine the directly visible geometry. In
order to shade the found hit points, shadow rays are traced to check
the light sources in the scene for occlusion, while secondary rays
are recursively cast in the case of reflective or refractive geometry.

4



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

The biggest advantage of ray tracing over rasterization is that most
real-world effects are straightforward to simulate. These include
depth of field, motion blur, soft shadows [Cook et al. 1984], as well
as full global illumination [Pharr and Humphreys 2004].

Traditionally, ray tracing has been used for high quality off-line
image generation, as its performance has been too low compared
to hardware rasterization. However, recent technological advances
have enabled ray tracing to achieve real-time performance, and have
made it an interesting alternative to rasterization for interactive ap-
plications. State-of-the-art ray casting algorithms operate on bun-
dles of rays to efficiently amortize intersection costs and rely on
highly optimized acceleration structures built over the scene geom-
etry [Wald et al. 2001; Reshetov et al. 2005; Wald et al. 2007].

The versatility of ray tracing as a visibility sampling technique
makes it useful not only for rendering, but also for other tasks per-
formed in interactive applications, such as collision detection or
object picking. While such tasks traditionally utilize different data
structures, in an interactive ray tracing setting the same structures
can be used for accelerating both rendering and object interaction.

5.1.1 Using EXTRA for Ray Tracing Backends

The X3D scene graph structure is not directly optimized for ray
tracing based rendering. This is due to the fact that X3D, like its
predecessor VRML, have been originally developed with rasteriza-
tion as a target rendering technology.

When using rasterization, any potentially visible geometry is usu-
ally processed at each rendering pass, in order to minimize the up-
load to the GPU. In ray tracing, on the other hand, geometry is usu-
ally created once and cached, and only updated by changing e.g.
transformation matrices or shading parameters.

Because of this difference, a second optimized scene graph version
is required for ray tracing based rendering (called speed-up graph
in the following). The primary task of this speed-up graph is to keep
the ray tracing objects synchronized with their corresponding X3D
nodes. Thus, X3D node changes must be propagated to the corre-
sponding ray tracing object(s). For this purpose speed-up graphs
use RTSG’s listener API.

The speed-up graph introduces some additional memory overhead,
due to the replication of the scene graph data. The replication of
the scene graph structure can be minimized by keeping only the
non-static nodes separately in the speed-up graph. The static X3D
nodes corresponding to one subgraph can be collapsed into a sin-
gle speed-up graph node. The replication of the node data can be
minimized by using the same representation for the X3D and the
rendering backend, e.g. to share vertex arrays. However, due to the
possible differences between the memory layout of X3D fields and
the backend data structures, this might not always be possible.

5.1.2 OpenRT

Our first ray tracing rendering backend implementation for RTSG
is based on the OpenRT API [Dietrich et al. 2003]. OpenRT has
a syntax similar to OpenGL, but there are major differences in the
semantics. As ray tracing is not efficient for immediate drawing,
OpenRT based programs must define the entire geometry before
rendering begins. Geometry is encapsulated in objects, which are
similar to OpenGL’s display lists, and can be instantiated multiple
times in the scene. As soon as an object has been defined, OpenRT
constructs a spatial index structure for it. While redefining a large
object can be time consuming, rigid animation of instances is effi-
ciently supported via changes to their transformation matrices with-
out modifying the corresponding spatial index structure [Wald et al.

2003]. OpenRT maintains a top-level acceleration structure over all
instances, which is rebuilt when instances have changed.

Two major requirements for our OpenRT based RTSG rendering
backend need to be fulfilled, in order to achieve maximum perfor-
mance with X3D scenes. First, the multi-level X3D scene graph
has to be optimally mapped to the two-level OpenRT scene graph.
Second, we want to avoid traversing the whole X3D scene graph
every frame, and instead propagate changes directly using listeners.

One straightforward way to map the X3D scene graph to OpenRT
would be to put all geometry into a single OpenRT object. How-
ever, this is only efficient for fully static scenes, as objects would
have to be recreated on every animation frame. Another straight-
forward approach would be to create one OpenRT object for each
Shape node. However, in this case OpenRT would also not per-
form well, as there would be too many instances, which would im-
pact ray casting performance. Therefore, we have taken a hybrid
approach, which tries to find an optimal number of OpenRT objects
and instances. We analyze the X3D graph, locate its largest static
subgraphs, and merge dynamic nodes that transform coherently.

In order to avoid full traversal of the X3D scene graph, we use a
speed-up graph, which is synchronized with scene changes. The
speed-up graph is constructed after the X3D scene has been created
and contains only nodes that influence the transformation stack. It is
designed to minimize the number of OpenRT objects and instances.

As already mentioned, we additionally take care of Script nodes,
as they may also modify the scene state. For scripts with deactivated
“direct output”, all nodes that they can modify are assumed to be
dynamic. When “direct output” is activated for a script, we conser-
vatively assume that all X3D namespaces accessible by the script
are fully dynamic, as such scripts can directly modify the scene
graph via the SAI API. Our algorithm tries to detect the largest
static subgraphs in the scene which cannot be modified neither by
routes nor by scripts and merges them into a single OpenRT object.

Objects’ appearance changes are directly propagated to OpenRT.
When a change modifies the transformation hierarchy, we traverse
the speed-up graph in order to compute accumulated transformation
matrices for the influenced OpenRT instances. As each node in the
speed-up graph stores the accumulated matrices of all its parents,
we directly start traversing from the modified speed-up graph node.

The speed-up graph additionally manages non-geometric objects,
such as light sources and view points, which might be transformed
by the graph. This is required because OpenRT only manages such
objects in world coordinate space.

5.1.3 RTfact

We have also developed a module for RTSG which uses RT-
fact [Georgiev and Slusallek 2008] as a rendering backend. RTfact
is a modern real-time ray tracing library that utilizes generic pro-
gramming concepts to deliver both performance and flexibility. It
consists of a collection of loosely coupled components, which al-
lows easy integration of new algorithms and data structures with
maximum runtime performance, while leveraging as much of the
existing code base as possible. The efficiency of C++ templates al-
lows RTfact to achieve fine component granularity, to incorporate
multiple shading models, and to generically handle arbitrary rays.

A key feature of RTfact is that it can robustly handle multiple ren-
dering configurations simultaneously, in contrast to OpenRT. This
allows us to use the best suitable algorithms and data structures for
a specific application in order to achieve best performance. RTfact
also directly exposes ray tracing functionality to the application,
which for example enables object picking or collision testing.

5



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

Beetles Venice Conference Campus
inView 3.5 4.1 8.1 2.9
RTSG/OpenRT 3.8 4.4 8.2 2.9
RTSG/RTfact 4.1 5.6 17.4 4.8

Table 1: Performance in FPS of RTSG with OpenRT and RTfact on
static scenes compared to inView.

For managing dynamic scenes, RTfact maintains its own internal
data structure, which contains only geometry and appearance infor-
mation. It supports multiple levels of instantiation which allows it
to mirror the RTSG scene graph, without the need for an interme-
diate speed-up graph, like with our OpenRT plugin. Such organiza-
tion has another two advantages. First, it simplifies the RTSG inte-
gration module, as it now only needs to propagate scene changes to
the RTfact backend. Second, it ideally allows for best optimization,
as the underlying rendering backend now contains enough informa-
tion about the scene organization, which enables efficient building
of acceleration structures for ray tracing using the scene hierarchy.

The RTfact renderer plugin attaches listeners to the RTSG scene
graph nodes at initialization time. During event propagation in
RTSG, each event is translated and immediately sent to the RTfact
backend. There, the modified nodes are updated and pushed into
a priority queue, which sorts the events according to the depth of
the modified nodes in the scene graph. As soon as all scene modifi-
cations have been performed, the queue is flushed which results in
updating the internal ray tracing acceleration structures.

RTfact also allows attaching non-geometry objects to nodes, which
makes light source transformations, for example, straightforward.
However, RTfact currently does not optimize well static and dy-
namic parts of the scene. As a result, in the presence of animations
a separate node is created in its internal scene graph for each X3D
shape node. Our RTfact plugin also currently does not support co-
ordinate interpolation from corresponding X3D nodes.

5.2 Rasterization

In order to demonstrate that RTSG is as well suited for rasteriza-
tion as for ray tracing, we have implemented a rasterization-based
renderer using the OGRE [OGR 2000] rendering engine.

OGRE maintains its own internal graph structure for the scene ge-
ometry, which has some differences to X3D. First, OGRE’s scene
graph is actually a tree, i.e. each node (except for the root node) has
exactly one parent node. Second, not all X3D nodes have a direct
counterpart in OGRE. A SceneNode node in OGRE is actually a
Transform node in X3D. Also, geometry, textures, and material
properties are stored outside the OGRE scene graph in Mesh and
Material objects. Geometry instances correspond to Entity
nodes in OGRE, and must be attached to SceneNodes. Entity
nodes contain references to Mesh and Material objects.

Similarly to the ray tracing rendering plugins, our OGRE plu-
gin also uses the event notification infrastructure of RTSG. When
the plugin is attached to an RTSG scene, it creates a correspond-
ing scene graph in OGRE. X3D Transform nodes are directly
mapped to SceneNodes in OGRE. As OGRE’s scene graph must
be a tree, every X3D Transform node with multiple parents is
replicated as multiple SceneNodes in OGRE. The same holds for
X3D Shape nodes, for which OGRE Entity nodes are created.

The renderer attaches listeners to the RTSG scene graph nodes that
may change during the lifetime of the scene. Whenever a listener is
triggered, the change is immediately propagated to the correspond-
ing OGRE nodes/objects.

Troopers Kitchen Conference Campus
inView N/A 1.5 6.9 2.4
RTSG/OpenRT 12.0 1.6 8.2 2.9
RTSG/RTfact 16.7 1.9 11.2 2.7

Table 2: Performance in FPS of RTSG with OpenRT and RTfact on
dynamic scenes compared to inView. The Troopers animation does
not work with inView.

6 Results

In this section, we present performance results of RTSG using our
three rendering plugins, tested on a number of VRML/X3D scenes.

The Campus scene (Figure 3 right) is a massive architectural model
consisting of 4.3 million triangles. It tests the ability of a renderer
to handle complex static scenes.

The Beetles scene (Figure 1 left) has a lot of detailed static geome-
try consisting of 2.7 million triangles.

The Venice scene (Figure 1 middle) is fully static and consists of 1.2
million triangles. It contains three complex statues on the ground,
and the buildings have reflective and refractive windows. The scene
also has very large textures which require rasterization based ren-
derers to scale them down in order to fit them into the GPU memory.

The Troopers scene (Figure 4 number 2) consists of 48 rigid body
animated figures adding up to about 19,000 triangles. With its many
Routes and changing transformations, this scene is a good perfor-
mance test for the event processing of a VRML/X3D browser.

The Escherknot scene (Figure 4 number 4) contains 4,600 triangles
and a CoordinateInterpolator with two key frames. It tests how ef-
ficiently a browser implements key-frame animation.

The Conference Room [Ward 1996] (Figure 3 left) and BART
Kitchen [Lext et al. 2000] (Figure 1 right) are popular ray tracing
benchmark scenes. The Conference Room contains static detailed
geometry made up of 280,000 triangles. The BART Kitchen (ca.
108,000 triangles) contains a lot of reflective and refractive geome-
try and a toy vehicle driving around the floor.

We additionally put a rotating teapot in the Conference and Campus
scenes, in order to measure how different rendering plugins behave
when a simple animation takes place in a complex scene.

All numbers in the performance tables are in frames per second
(FPS). Ray tracing performance was measured on an Intel Q9400
CPU with 4GB RAM, while rasterization performance was mea-
sured on a machine with an AMD Phenom 9850 CPU, 2GB RAM,
and a Radeon HD4850 graphics card. The best results in each table
are shown in bold.

Figure 3: Two of our ray tracing test scenes. Left: Conference
Room w/ teapot (17.4 FPS); Right: Campus w/ teapot (6.3 FPS).

6



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

Figure 4: Test scenes used with OGRE for rasterization performance comparison. From left to right: Beetles, Troopers, Venice, Escherknot.

6.1 Ray Tracing

Tables 1 and 2 compare the performance of our RTfact and OpenRT
renderer plugins for RTSG against the inView VRML browser. in-
View is an improved version of VrmlRT and uses OpenRT as a
rendering backend. In the presence of animations, it performs full
scene graph traversal for each frame, in order to detect changes and
to update OpenRT’s acceleration structures.

For the static scenes, inView and RTSG/OpenRT perform almost
identically. RTSG/OpenRT is slightly faster because of its ability
to optimize objects and instances better. RTSG/RTfact consistently
outperforms the other two, mostly due to RTfact’s superior render-
ing performance.

Even though our RTfact integration does not currently optimize
static and dynamic nodes in the presence of animations, RTSG/RT-
fact again outperforms the other two renderers on most dynamic
scenes. This is also due to the fast build-from-hierarchy algorithm
for RTfact’s internal acceleration structures.

On the Conference and Campus scenes RTSG/OpenRT performs
most consistently, as can be noted by comparing the results in Ta-
ble 1 and Table 2. Switching on the rotating teapot animation does
not impact its performance, as only one node of the speed-up graph
is traversed for each frame. The performance RTSG/RTfact drops
significantly on both scenes, because of the lack of optimizations
in dynamic scenes. As a result, the internal ray tracing acceleration
structures contain a lot of geometry instances, which hurts render-
ing performance.

inView also experiences performance loss in the presence of ani-
mations. This is due to the overhead introduced by the full scene
graph traversal for each frame, which amounts to 14ms on the Con-
ference scene and 66ms on Campus. As a serial task, this traversal
overhead can become a rendering bottleneck if the visualization is
faster, i.e. on many-core machines or with rasterization, or on more
complex scenes.

6.2 Rasterization

We also compared our OGRE rendering plugin against a number
of existing rasterization based VRML/X3D browsers, specifically
BS Contact (v7.1), Octaga Player (v2.2.0.10), Flux Player (v2.1),
InstantReality (public beta 6), and Xj3D (v1.0).

We gathered performance results on Windows, as it is the operating
system supported by most of the publicly available browsers. We
used Fraps [Beepa 2009] to measure the frame rates.

Most browsers (including our own) had problems with the head-up
display with clickable text in the Troopers scene. Only InstantRe-
ality and Octaga Player managed to render it correctly. In all other
browsers, it was either ignored altogether, probably due to missing
support, or rendered at a completely wrong position.

Beetles Troopers Venice Escherknot
BS Contact (GL) 14.8 11.6♦ 151.6⊗ 631.8
Octaga Player 38.2 14.0 64.2 64.2
Flux Player 30.4 9.2♦ 24.7 32.0
InstantReality 64.2 32.3 11.6 64.1
Xj3D 26.8 27.2♦ 123.4⊗ 256.5
RTSG/OGRE 113.7 51.6♦ 631.2 192.5

Table 3: Performance in FPS of RTSG with OGRE compared to
other VRML/X3D browsers, measured with Fraps. Incorrectly ren-
dered scenes are marked with ⊗, and ♦ indicates missing head-up
display with user interface on the Troopers scene.

The Venice scene was problematic as well. Xj3D suffered from
rendering artifacts and BS Contact loaded only part of the textures,
keeping large parts of the scene untextured. InstantReality dis-
played the scene correctly, but was slowed down considerably by
the large textures. Some frames took up to 6 seconds to render.

As can be seen from Table 3, RTSG/OGRE consistently outper-
forms the other browsers by a considerable margin, often by more
than an order of magnitude. This is mainly OGRE’ merit, as we
simply propagate scene changes without performing any node op-
timizations. OGRE’s rasterization engine is well optimized for
dynamic game environments, and performs efficient render state
management and spatial culling. RTSG/OGRE is not the fastest
renderer only on the Escherknot scene. This is due to our imple-
mentation of CoordinateInterpolators which replaces the
complete mesh on each frame instead of performing the interpola-
tion on the graphics card. As a result our performance is currently
suboptimal for such scenes.

7 Limitations and Discussion

One of the problems when using ray tracing with X3D is the miss-
ing support in the appearance model for basic material parameters,
such as reflection and refraction. We added support for such param-
eters by using the OpenRT-specific ORTAppearance node which
can support arbitrary material parameters. As a result, only our sys-
tem can play the modified scenes.

As already mentioned, the original VRML material definition was
designed at a time when GPUs had a fixed shading model. How-
ever, complex lighting effects, such as shadows, reflections, and
programmable materials, are supported by many of today’s GPUs.
Instead of extending the VRML lighting model in the X3D stan-
dard, only direct support for shading languages has been added.
While this makes shading more flexible, adding imperative code to
appearance nodes violates the descriptive nature of X3D and limits
the use of different rendering algorithms, such as ray tracing.

It is difficult to visualize materials in the same or even similar way
when using different rendering algorithms. X3D (and computer

7



To appear in the ACM Web3D 2009 International Conference on 3D Web Technology proceedings

graphics in general) is missing a portable, unified, declarative shad-
ing language that can be efficiently mapped to both ray tracing and
rasterization. One solution to this problem might be to use external
prototypes. In the X3D scene, we would use an external prototype
to specify custom material parameters, such as reflection and re-
fraction coefficients. This prototype would be then mapped to a
custom material node if the browser recognizes and supports it, or
to a fallback standard material node otherwise. Still, X3D has no
standard way of describing rendering semantics. Thus, although
standard-compliant, such an approach would not be fully portable.

Another problem that we have experienced is the implementation
overhead for avoiding scene graph traversal. Situations where the
scene topology changes, e.g. when adding or removing nodes from
the scene graph, are hard to map to the backend scene graph with-
out full re-traversal of the scene. Additionally, the performance im-
provement gained by avoiding full traversal is more noticable only
on dynamic scenes with a large number of static nodes, or when
visualization is very fast.

8 Conclusions and Future Work

In this paper we presented RTSG, a flexible X3D-compliant scene
management and rendering system. Its highly customizable render-
ing pipeline enables the use of various visualization algorithms and
rendering backends, such as ray tracing and rasterization.

There are still opportunities for improving the performance of our
renderer plugins. For example, our RTfact and OGRE plugins do
not currently analyze the routes in the scene in order to optimize
static and dynamic geometry, as done for OpenRT. Doing so would
allow the rendering backends to group geometry more efficiently.

Another current limitation in our system is the missing multi-
threading support. While the RTfact and OpenRT ray tracing en-
gines are multi-threaded, RTSG event processing is still serial.

In future, we plan to extend RTSG to a full-featured virtual reality
system. We are already working on a sound sumulation sub-system,
which uses the RTSG’s rendering plugin infrastructure, and we are
looking into haptics integration.

Another interesting topic is hybrid rendering, incorporating both
rasterization and ray tracing. For this we would need to improve
the messaging mechanisms between our rendering components, as
it might require more information than simple integer-encoded ren-
dering operations.

Finally, we plan to release RTSG as an open source library.

References

AKENINE-MÖLLER, T., AND HAINES, E. 2002. Realtime Ren-
dering (2nd edition). A K Peters, July. ISBN: 1568811829.

APPEL, A. 1968. Some techniques for shading machine render-
ings of solids. In AFIPS ’68 (Spring): Proceedings of the April
30–May 2, 1968, spring joint computer conference, ACM, New
York, NY, USA, 37–45.

BEEPA, 2009. Fraps: Real-time video capture and benchmarking.
http://www.fraps.com/.

BEHR, J., AND FRÖHLICH, A. 1998. Avalon, an Open VRML
VR-AR system for Dynamic Application.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, 137–145.

DIETRICH, A., WALD, I., BENTHIN, C., AND SLUSALLEK, P.
2003. The OpenRT Application Programming Interface – To-
wards A Common API for Interactive Ray Tracing. In Proceed-
ings of the 2003 OpenSG Symposium, 23–31.

DIETRICH, A., WALD, I., WAGNER, M., AND SLUSALLEK, P.
2004. VRML Scene Graphs on an Interactive Ray Tracing En-
gine. In Proceedings of IEEE VR 2004, 109–116.

GEORGIEV, I., AND SLUSALLEK, P. 2008. RTfact: Generic
Concepts for Flexible and High Performance Ray Tracing.
In IEEE/Eurographics Symposium on Interactive Ray Tracing
2008.

GLASSNER, A. 1989. An Introduction to Ray Tracing. Morgan
Kaufmann. ISBN 0-12286-160-4.

LEXT, J., ASSARSSON, U., AND MÖLLER, T. 2000.
BART: A Benchmark for Animated Ray Tracing. Tech.
rep., Department of Computer Engineering, Chalmers Univer-
sity of Technology, Göteborg, Sweden, May. Available at
http://www.ce.chalmers.se/BART/.

2000. OGRE Object Oriented Graphics Rendering Engine.
http://www.ogre3d.org.

1999. OpenSceneGraph. http://www.openscenegraph.org.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Elsevier Science &
Technology Books.

REINERS, D., VOSS, G., AND BEHR, J. 2002. OpenSG: Basic
Concepts. In First OpenSG Symposium.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
Level Ray Tracing Algorithm. ACM Transaction on Graphics
24, 3.

ROHLF, J., AND HELMAN, J. 1994. IRIS Performer: A High Per-
formance Multiprocessing Toolkit for Real-Time 3D Graphics.
Computer Graphics 28, Annual Conference Series, 381–394.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M.
2001. Interactive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed
Interactive Ray Tracing of Dynamic Scenes. In Proceedings of
the IEEE Symposium on Parallel and Large-Data Visualization
and Graphics (PVG).

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1.

WARD, G., 1996. MGF, Materials and Geometry Format Package.
http://radsite.lbl.gov/mgf/HOME.html.

WERNECKE, J. 1994. The Inventor Mentor. Addison-Wesley.
ISBN 0-201-62495-8.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6, 343–349.

2004. ISO/IEC 19775-1:200x, Extensible 3D
(X3D), Part 2: Application programmer interfaces.
http://www.web3d.org/x3d/specifications/x3d specification.html.

2004. ISO/IEC 19775:200x, Extensible 3D (X3D).
http://www.web3d.org/x3d/specifications/x3d specification.html.

2006. Xj3D, a toolkit for VRML97 and X3D content written com-
pletely in Java. http://www.xj3d.org/.

8


