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Jaroslav Ǩrivánek’s research aimed at finding the one robust and efficient light trans-
port simulation algorithm that would handle any given scene with any complexity of
transport. He had a clear and unique vision of how to reach this ambitious goal. On
his way, he created an impressive track of significant research contributions. In this
course, his collaborators tell the story of Jaroslav’s quest for that “one” algorithm and
discuss his impact and legacy.
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1.9 Markov chain methods (Martin Šik) . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Presenters 4
2.1 Alexander Keller, NVIDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Pascal Gautron, NVIDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Advances in Monte Carlo Rendering: The Legacy of Jaroslav Ǩrivánek

1 Syllabus

Jaroslav Ǩrivánek has been an outstanding and highly respected researcher of the
rendering community who passed away far ahead of time. Through his numerous
contributions to light transport simulation he managed to profoundly influence an en-
tire domain of academia and industry.

In this course, we recap many important contributions of Jaroslav’s career, under-
lining their practicality and pointing out how they all were consequent steps to finding
the “one” robust light transport simulation algorithm that would efficiently render any
given scene. Rarely has a single person had such an impact, and the authors believe
it is worth remembering and continuing his legacy.

1.1 Introduction (Alexander Keller)

Alex will provide a brief introduction to the course.

1.2 In Memoriam of Jaroslav Ǩrivánek (Pascal Gautron)

Beyond the amazing scientist, Jaroslav was also famous for his humanity, kindness, and
infectious smile that left a mark on each and every person he met. A tribute to a life
of science, friendship, and fearlessness.

1.3 Irradiance and radiance caching (Pascal Gautron)

Irradiance Caching has been the solution of choice to amortize the computation of
diffuse inter-reflections over entire regions in world space. This idea marked the be-
ginning of Jaroslav’s search for a generalized and efficient light transport solution, and
he extended the principle to global illumination on glossy surfaces [KGPB05]. While
effective in principle, (ir)radiance caching has numerous caveats, such as the surface
roughness range in which the algorithm is applicable, interpolation artifacts, and cor-
ner oversampling. We elaborate on solutions towards practical, robust (ir)radiance
caching and its applications in production rendering.

1.4 Sampling paths (Iliyan Georgiev)

Monte Carlo rendering methods are based on sampling light transport paths that con-
nect emitters and sensors. The key to achieving efficiency is to find those paths that
bring significant amount of light to the camera. Jaroslav recognized that devising a
single robust path sampling technique for all types of scenes is an elusive challenge.
Instead, he focused on simple, specialized techniques for different illumination effects
and on efficiently combining these techniques. This effort has pushed the state of the
art in both surface [GKDS12] and volumetric [KGH+14, GKH+13, GMH+19] rendering.
We review these advances and discuss the valuable insights they have provided.

1.5 Zero-variance walks (Eugene d’Eon)

For efficient Monte Carlo light transport simulation, it is vital to sample only light paths
that contribute to the image to avoid wasting computations on sampling irrelevant
paths. We show how the theory of zero-variance estimators from neutron transport can
inform the design of low-variance estimators by making globally-informed (as opposed
to purely local) importance sampling decisions at every scattering event in a medium
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to guide paths towards light sources in a way that balances their final contributions
back at the camera. We demonstrate the theory using a novel perfectly zero-variance
estimator due to Jaroslav, and also review a practical variance reduction scheme for
subsurface scattering [Kd14].

1.6 Path guiding (Jǐŕı Vorba)

Traditional path sampling techniques are inefficient in scenes with complex geomet-
ric occlusion. This can be addressed by designing an estimator inspired by the zero-
variance theory, which guide paths towards relevant regions of the scene. The work
of Vorba and colleagues [VKŠ+14], under Jaroslav’s supervision, has resumed the in-
terest in such path guiding methods, showing their practical potential on scenes with
complex visibility and as a complement to methods like VCM [GKDS12]. More impor-
tantly, this was the first work to point out that path guiding can be viewed as learn-
ing uncertainty, and as such an abundant toolbox of machine learning techniques
can be explored within the rendering context. We cover path guiding techniques ex-
plored by the team around Jaroslav [VK16, HEV+16, HZE+19a], show their connection
to zero-variance theory and neutron transport, and discuss the impact of these works
in research and industry.

1.7 Direct lighting (Petr Vévoda)

Direct and indirect illumination calculations are two important components of any
physically based renderer. While the indirect component has been traditionally consid-
ered a more complex problem and has been studied in many research works, Jaroslav
acknowledged that improving the efficiency of direct illumination could have a sub-
stantial impact on the overall rendering performance, especially with complex visibility
and in the presence of many light sources. In this part, we cover direct illumination
sampling based on online learning of light selection probability distributions. We show
how to formulate the learning process as Bayesian regression to prevent over-fitting
and ensure robustness even in the early stages of computation [VKK18].

1.8 Multiple importance sampling (Pascal Grittmann, Ivo Kondapaneni)

Efficiently combining various sampling techniques is vital in modern realistic rendering.
For over a decade, the balance and power multiple importance sampling (MIS) heuris-
tics have been universally accepted, and the problem was largely deemed solved by
the community. Jaroslav’s search for the “one” algorithm led him to challenge these
widespread beliefs. We discuss how the optimal weights can be far better than the
balance heuristic [KVG+19], and we show that injecting variance information can im-
prove robustness [GGSK19]. We further discuss how the theoretical insights around MIS
have been used to make algorithms more lightweight, robust, and efficient [KŠV+19].

1.9 Markov chain methods (Martin Šik)

Jaroslav saw the Markov chain methods as an alternative way towards the “one” ren-
dering algorithm. These methods generate sequences of correlated samples, which
yield faster convergence than independent Monte Carlo sampling. However, that
convergence can be irregular and unpredictable, which had been overlooked [KKG+14,
ŠK19b]. We discuss how to achieve more uniform convergence in Markov chain Monte
Carlo [ŠK16, GRŠ+16, ŠOHK16] to improve its viability in practice [ŠK19a].
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2 Presenters

2.1 Alexander Keller, NVIDIA

Alexander Keller is a Director of Research at NVIDIA. Before, he had
been the Chief Scientist of mental images, where he had been re-
sponsible for research and the conception of future products and
strategies including the design of the NVIDIA Iray light transport sim-
ulation and rendering system. Prior to industry, he worked as a full
professor at Ulm University, where he co-founded the UZWR (Ulmer
Zentrum für wissenschaftliches Rechnen) and received an award for
excellence in teaching. Alexander Keller has more than 3 decades
of experience in ray tracing and pioneered quasi-Monte Carlo meth-
ods for light transport simulation. His current interests include machine
learning and wireless communication.

2.2 Pascal Gautron, NVIDIA

Pascal Gautron’s work at NVIDIA is focused on designing and opti-
mizing fast, high-quality rendering solutions. Over the last 15 years, he
has gathered an academic and industrial background in computer
graphics research, photorealistic image synthesis, real-time render-
ing, and movie post-production.

2.3 Jǐŕı Vorba, Weta Digital

Jǐŕı is a researcher and rendering software developer at Weta Digital.
He has received his Ph.D. from Charles University in Prague in 2017.
From September 2012 to January 2013, he undertook an internship at
Max Planck Institute for Informatics in Saarbrücken under the supervi-
sion of Dr. Tobias Ritschel. In 2014, as part of his internship with Weta,
he implemented research results on path guiding achieved during his
PhD. into Manuka, Weta Digital’s renderer.

2.4 Iliyan Georgiev, Autodesk

Iliyan is a researcher and principal software engineer at Autodesk.
He holds a degree from Saarland University, Germany, for which he
received the Eurographics PhD Thesis Award. His research is focused
primarily on Monte Carlo methods for physically based light transport
simulation. Iliyan publishes regularly at top-tier scientific journals and
conferences, and his work has been incorporated into various pro-
duction rendering systems.
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2.5 Martin Šik, Chaos Czech

Martin Šik is a senior researcher and developer at Chaos Czech, a.s,
where he helps to develop Corona Renderer. Martin received his
Ph.D. from Charles University in 2019, where he studied under the su-
pervision of Jaroslav Ǩrivánek. His primary research interest is in realis-
tic rendering with the focus on both Markov chain Monte Carlo and
ordinary Monte Carlo methods for light transport simulation.

2.6 Eugene d’Eon, NVIDIA

Eugene d’Eon is a research scientist at NVIDIA working on realistic sim-
ulation of surface and volume scattering. He has published a num-
ber of papers on skin and hair rendering and has helped develop
the Manuka renderer at Weta Digital and the Arnold renderer at Au-
todesk. Much of his last few years has been devoted to generalizing
analytical and Monte Carlo methods in classical linear transport the-
ory to support correlated random media.

2.7 Pascal Grittmann, Saarland University

Pascal Grittmann is a PhD student at Saarland University under the
supervision of Prof. Philipp Slusallek. He obtained his BSc (2016) and
MSc (2018) in computer science at Saarland University. In 2017, he
spent three months at Charles University in Prague on an internship,
working with Jaroslav Ǩrivánek. His research focuses on Monte Carlo
methods for light transport simulation, chasing the dream of the one
algorithm to render them all.

2.8 Petr Vévoda, Charles University Prague

Petr Vévoda is a PhD student at Charles University and a researcher
at Chaos Czech. He was supervised by Jaroslav Ǩrivánek at both po-
sitions. His research is focused on realistic rendering algorithms and
their application in production. He collaborated on research of a
new algorithm for rendering participating media, a principled way of
learning a distribution for many-lights sampling from previous obser-
vations, and a provably optimal MIS weights.
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2.9 Ivo Kondapaneni, Charles University Prague

Ivo Kondapaneni is a PhD candidate at Charles university, and was
working in Computer Graphics Group under supervision of Jaroslav
Ǩrivánek and currently under supervision of Alexander Wilkie. His re-
search focuses on Monte Carlo methods, machine learning and sta-
tistical modeling for Light transport simulation.
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3 The Legacy of Jaroslav Ǩrivánek
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Alexander Keller, Director of Research, NVIDIA

Welcome to the SIGGRAPH 2020 Course on Advances in Monte Carlo Rendering.

M\ name is Alexander Keller and I am a director of research at NVIDIA.



THE LEGACY OF
JAROSLAV KĤIVÉNEK

This \ear·s course is special, as it is in commemoration of Jaroslav Kĥivinek.

Jaroslav Kĥivinek has been an outstanding and highl\ respected researcher of the rendering communit\ who passed awa\ far ahead
of his time. Through his numerous contributions to light transport simulation he managed to profoundl\ influence an entire domain
of academia and industr\.

In this course, we therefore will recap man\ important contributions of Jaroslav·s career, underlining their practicalit\ and pointing
out how the\ all were consequent steps to finding the ´oneµ robust light transport simulation algorithm that would efficientl\ render
an\ given scene. Rarel\ has a single person had such an impact, and we believe it is worth remembering and continuing the legac\
of Jaroslav Kĥivinek.



THE LEGACY OF JAROSLAV KĤIVÉNEK
The SIGGRAPH Courses

I Practical Global Illumination with Irradiance Caching (2007)

² reuse b\ similarit\ heuristics
² temporal coherence and stabilit\

I Path Space Filtering (2016) with weights Zi,j based on the same similarit\ heuristics

c̄i :=

Pbm−1
j=0

χB(Q)
(

[Vi+j − [i
)

· Zi,j · cVi+j
Pbm−1

j=0
χB(Q)

(

[Vi+j − [i
)

· Zi,j

I path reuse from Continuous Multiple Importance Sampling (2020)

hI(\)i =

Q
X

i=1

fl(\, ]i)
PQ

j=1 S(]i|\j)
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Before we dive in, please note that we have a web page for this course. Its link will be provided on the last slide of the presentation.
Also note that in the PDF of this presentation, all references are links that can be clicked.

Teaching is certainl\ one important part of Jaroslav·s legac\, and in this introduction to the course, I will give some exemplar
evidence of the impact of the SIGGRAPH courses that Jaroslav had been part of or that he was organi]ing.

His first course was on practical global illumination with irradiance caching, an algorithm that a large part of the rendering industr\
had been working on at that time. Irradiance caching provided a wa\ to speed up global illumination computations b\ sharing
irradiance computations when appropriate. The possibilit\ of sharing had been determined b\ similarit\ heuristics.

Invented b\ Greg Ward, Jaroslav with Pascal Gautron investigated the algorithm, provided a profound understanding of its limitations,
extended it accordingl\, and made it more practical.

The\ also took the next step and investigated temporal coherence and image stabilit\ when computing multiple frames of an anima-
tion.

+

It were exactl\ these similarit\ heuristics that later were used in the weights of path space filtering, a technique that uses a weighted
average to the share the contributions c of light paths among multiple camera paths b\ averaging them. A limitation of that technique
is the restriction of the heuristics to create onl\ binar\ weights, as otherwise using the weighted average ma\ increase variance.

+

At this \ear·s SIGGRAPH this limitation of path reuse has been lifted b\ introducing continuous multiple importance sampling: Instead
of a weighted average, the contributions of Q light transport paths are shared in a quer\ camera path \ b\ combining the contribution
fl of each light path segment ]i divided b\ the sum of the probabilities of having generated the light path segment, given that its
camera path segment would have been \j.

This is a first example of Jaroslav·s impact over multiple \ears.



THE LEGACY OF JAROSLAV KĤIVÉNEK
The SIGGRAPH Courses

I Optimi]ing Realistic Rendering with Man\-Light Methods (2012)

² handling difficult light paths (virtual spherical lights and virtual point light distribution)
² scalabilit\ and real-time

I Instant Radiosit\ (1997) and Illumination in the Presence of Weak Singularities (2004)

LU([,!U) =

Z

A
fU(!, [,!U)min{G([, \), b}V([, \)Le(\,−!)d\

+

Z

S2

Le(h([,!),−!)
max{G([, h([,!)) − b, 0}

G([, h([,!))
fU(!, [,!U) cos+ θ[d!

² MIS Compensation: Optimi]ing Sampling Techniques in Multiple Importance Sampling (2019)
² Optimal multiple importance sampling (2019)

I Spatiotemporal Reservoir Resampling for Real-time Ra\ Tracing with D\namic Direct Lighting (2020)

4

For the second example, I like to go back to the 2012 course on ´Optimi]ing Realistic Rendering with Man\-Light Methodsµ. Man\
lights had been identified as a challenge, and numerous approaches to the problem were around. Jaroslav with his collaborators
focused on the deep understanding and making the algorithms practical - alread\ including the aspects of scalabilit\ and real-time
rendering.

+

At that time Jaroslav invited me to talk about instant radiosit\, a simple algorithm that traced a set of light transport paths to create
what later has been named virtual point light sources. Using this point cloud, global illumination can be simpl\ computed b\ adding
up the contributions of all virtual point lights visible from the point to be shaded.

An issue is that the geometr\ term needed to be clipped or bounded b\ b in order to avoid overmodulation due to the inverse square
distance in case the point to shaded and the virtual point light are too close.

As it turns out, this limitation was eas\ to get rid of: Clipping the geometr\ term is compensated b\ + adding back the clipped part
of the reflection integral, however, now integrated over the hemisphere to avoid the weak singularit\. Simpl\ speaking, the missing
part is acquired b\ scattering a ra\ into the hemisphere. This in fact makes a heuristic for multiple importance sampling. A heuristic
that instead of combining multiple sampling techniques just partitioned the domain of integration.

+

As \ou ma\ alread\ guess, Jaroslav with his coworkers extended multiple importance sampling their wa\: Going be\ond what Veach
introduced in 1996, the\ came up with foundational improvements to multiple importance sampling over 20 \ears after the original
work.

+

At this \ear·s SIGGRAPH, a part of Jaroslav·s vision comes true: scalable real-time rendering of man\ lights is a realit\ in ´Spatiotem-
poral Reservoir Resampling for Real-time Ra\ Tracing with D\namic Direct Lightingµ.



THE LEGACY OF JAROSLAV KĤIVÉNEK
The SIGGRAPH Courses

I Recent Advances in Light Transport Simulation: Some Theor\ and a Lot of Practice (2014)

² wa\s to formulate the radiance LU reflected in a surface point [
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² push-button rendering: Corona Renderer
" usabilit\
" robustness

5

Besides practice, Jaroslav ver\ successfull\ drove rendering and Monte Carlo methods theor\. In fact, production rendering companies
were highl\ interested in Jaroslav·s algorithms and he had been sharing his work all over the industr\ in addition to academia.
Rendering algorithm research reached a new level b\ exploring more abstract approaches and unification. As a short example, let·s
take a look at the reflection integral formulated as integration over the hemisphere.

+

Its formulation over the surface @V has been known for long and is the basis of algorithms as the aforementioned multiple importance
sampling.

+

New then was the formulation of photon mapping in integral form. Whenever a photon hit sufficientl\ close to a point of quer\ [,
it was included in the computation. To make this technique consistent, the radius U had to go to ]ero. In the limit, this amounts to
the surface integral.

+

Path space filtering is a generali]ation of integrating over the solid angle. If a contribution of incident light in [0 is sufficientl\ close
to [, it ma\ be shared. Again, in the limit, this technique is consistent.

+

Besides theor\, half the course had been dedicated to practitioners, i.e. making the algorithms real. Besides Solid Angle, Pixar,
and Next Limit Technologies, Ondrej Karlik presented the Corona Renderer, which is all about usabilit\. Together with Jaroslav and
Adam Hotov\ the Corona renderer later on became commercial.

This was at a tipping point in rendering industr\: The path tracing revolution in movie industr\ was about to happen, replacing
complicated rendering algorithms with lots of parameters to optimi]e b\ the push-button paradigm. The new generation of renderers
had onl\ a minimal set of parameters which resulted in a much improved usabilit\ and robustness, not to speak of the much better
image qualit\ b\ ph\sicall\ based rendering.



THE LEGACY OF JAROSLAV KĤIVÉNEK
The SIGGRAPH Courses

I Machine Learning and Rendering (2018)

² On-line learning of parametric mixture models for light transport simulation (2014)

I Learning Light Transport the Reinforced Wa\ (2016)

² identit\ of reinforcement learning and light transport simulation

I Neural Importance Sampling (2019) and Neural Control Variates (2020)

6

In 2014 Jaroslav·s student Jiĥt Vorba and team presented the ´On-line learning of parametric mixture models for light transport
simulationµ. Core of the work was that light transport simulation could be made more efficient b\ learning which light transport
paths were important. This seminal article caused an avalanche of articles on machine learning and rendering, which became subject
of the 2018 SIGGRAPH Course.

+

Work that followed showed that in fact reinforcement learning and light transport simulation follow the same integral equation. All
that needed to be done was guiding path tracing towards the light sources. This was as simple as learning where the light came
from. It is worth a note that the data structures were ver\ similar to irradiance caching. Even the similarit\ heuristics were similar.
It actuall\ was onl\ a small tweak in the µoldµ algorithms to unleash a whole new level of improved performance.

+

All the related techniques were termed µpath guidingµ. Besides the classic data structures, neural importance sampling released in
the 2018 course showed that in fact neural networks were capable of efficient path guiding. The\ even can replace the classic data
structures to approximate radiance, which in turn enabled neural control variates in light transport simulation.



THE LEGACY OF JAROSLAV KĤIVÉNEK
The SIGGRAPH Courses

I The Path-Tracing Revolution in the Movie Industr\ (2015)

² ACM Transactions on Graphics Special Issue on Production Rendering

I Realistic Rendering in Architecture and Product Visuali]ation (2018)

² architectural, automotive, and product visuali]ation
² juxtapose this technolog\ to rendering for motion pictures and point out the most significant differences
² relativel\ little attention in the communication at SIGGRAPH

² we planned to appl\ for an ACM Transactions on Graphics Special Issue...

I check Jaroslav·s presentation Open Problems and Research Directions (2018)

7

As mentioned before, the path-tracing revolution changed the movie industr\ and following the 2015 SIGGRAPH course, the production
rendering companies described their technologies in depth in a seminal Special Issue of the ACM Transactions on Graphics.

+

2018 Jaroslav called for a course on the other kind of industrial rendering, the Realistic Rendering in Architecture and Product
Visuali]ation. In fact, renderers for architectural, automotive, and product visuali]ation are based on design decisions that are ver\
different from production rendering. Jaroslav made the fact public b\ ´juxtaposing this technolog\ to rendering for motion pictures
and pointing out the most significant differencesµ as described in the course abstract.

+

The abstract also states that ´relativel\ little attention in the communication at SIGGRAPHµ is dedicated to such rendering technolo-
gies and the presentations in that course made the case. Jaroslav and m\self planned to propose an ACM Transactions on Graphics
Special issue - complementar\ to the Production Rendering Special Issue...

+

In that sense, I like to recommend checking Jaroslav·s presentation on Open Problems and Research Directions (2018) as it still serves
as vision and guideline for future research.



ADVANCES IN MONTE CARLO RENDERING
The Legac\ of Jaroslav Kĥivinek

Alex Keller Pascal Gautron Jiĥt Vorba
NVIDIA NVIDIA Weta Digital

8

Now, let me introduce the presenters of this course. Besides m\self, Pascal Gautron and Jiĥt Vorba helped with the organi]ation of
the course and will present their research with Jaroslav.



ADVANCES IN MONTE CARLO RENDERING
The Legac\ of Jaroslav Kĥivinek

Ili\an Georgiev Martin äik Eugene d·Eon
Autodesk Chaos C]ech NVIDIA 9

We then have Ili\an Georgiev, Martin äik, and Eugene d·Eon who were close collaborators of Jaroslav, too.



ADVANCES IN MONTE CARLO RENDERING
The Legac\ of Jaroslav Kĥivinek

Ivo Kondapaneni Pascal Grittmann Petr Vpvoda
Charles Universit\ Prague Saarland Universit\ Charles Universit\ Prague 10

Last but not least, there are Ivo Kondapaneni, Pascal Grittmann, and Petr Vpvoda to share their part of science with Jaroslav.



JAROSLAV KĤIVÉNEK
A brilliant mind

course web page

Jaroslav·s research aimed at finding the one robust and efficient light transport simulation algorithm that would handle an\ given
scene with an\ complexit\ of transport. He had a clear and unique vision of how to reach this ambitious goal.

On his wa\ he created an impressive track of significant research contributions that \ou will find on his web page.
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4 Irradiance and Radiance Caching
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IRRADIANCE AND RADIANCE 
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GLOBAL ILLUMINATION
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© PDI/Dreamworks

Direct Lighting Only Global Illumination

Simulating the multiple bounces of light is crucial to achieve realistic appearance for virtual 
environments. Due to its inherent complexity, global illumination was originally 
approximated by crude methods such as a uniform ambient lighting or artist-positioned 
virtual light sources. This was later extended to interreflections on diffuse surfaces. 
Nowadays global illumination is a first-class citizen in any renderer. However, accurately 
simulating the behavior of light in all cases remains a challenge, that Jaroslav decided to 
take systematically, filling the gaps step by step. This chapter will focus on his early research 
work of extending the irradiance caching algorithm to compute global illumination on 
glossy surfaces. 
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32 YEARS AGO: IRRADIANCE CACHING
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Direct+Indirect

Indirect Only

Originally published in 1988, the irradiance caching algorithm is based on the observation 
that indirect diffuse lighting tends to vary slowly over surfaces. Based on this knowledge, 
the irradiance can be sparsely cached in world space, and interpolated. 
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IRRADIANCE CACHING: FOUNDATIONS
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The principle of interpolating indirect lighting is present in many approaches, such as the 
radiosity-based techniques. In comparison with radiosity the irradiance caching(IC) 
algorithm mainly differs by its simplicity and built-in adaptivity. 

The core principle behind the adaptive nature of IC is the observation that while irradiance 
varies slowly over surfaces, the rate of variation is directly dependent on the distance to 
the surrounding objects. A worst-case scenario is defined by the “split-sphere” model (left) 
where, for a given point, half the hemisphere above is completely dark and one is 
completely bright. If we were to reuse the irradiance in the neighborhood of that point, 
what would the error be compared to the ground truth? This error is a direct consequence 
of the distance to the surrounding objects, which is obtained as a by-product of irradiance 
evaluation. Using an estimate of that error one can deduce an accuracy criterion that will 
control how far an irradiance value can be reused around a given point (middle). 

The irradiance records are generated by hierarchically traversing the image, and looking up 
the existing records in an octree (right). If no record covers the considered point the 
algorithm creates a new record and stores it in the octree. This has the advantage of lazily 
computing global illumination only where needed. 
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IRRADIANCE GRADIENTS
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Simply reusing irradiance values in the neighborhood of irradiance records tends to create 
artifacts in the form of ‘flat’ areas in the image (left). Irradiance gradients, published in 
1992 by Ward and Heckbert, attempt to reduce such artifacts by introducing variations 
within the range of the records.
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IRRADIANCE GRADIENTS
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The irradiance estimate is based on a stratified sampling of the hemisphere above each 
irradiance record. For each cell the irradiance gradients model how the ‘walls’ of the cell 
would move if the surface would be tilted or translated. While computing the rotation 
gradient is straightforward, the translation gradient needs to account for an estimate of the 
parallax effect. 
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CHALLENGES: GLOSSY SURFACES
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The irradiance caching algorithm can provide accurate estimates of indirect diffuse lighting, 
and has been the core of the Radiance software, originally released in 1994 
(https://floyd.lbl.gov/radiance/). 
However its scope is limited to diffuse interreflections, and cannot simulate the view-
dependent effects of glossy materials (left: diffuse-only GI, right: ground truth). As most 
real-life objects have a directional component, extending this approach to glossy surfaces 
was a natural step towards designing a single algorithm for general light transport. 
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CHALLENGES: GRADIENT ACCURACY
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The irradiance gradients provide a limited estimate of the irradiance changes within the 
radius of an irradiance record, and are tied to one specific stratified sampling scheme. 
Improving the gradients is a crucial part of making this algorithm more robust. 
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CHALLENGES: SAMPLING AND LIGHT LEAKING
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Irradiance caching is also very sensitive to ray leaking. The radius of a record is a direct 
function of the distance to its surrounding geometry. A consequence of this is when some 
rays ‘leak’ through imperfections in the geometry (left, typically due to floating-point 
errors) the radius is overestimated and the irradiance is underestimated, creating visible 
errors (middle). 
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RADIANCE CACHING: FILLING THE GAP

©  2 0 2 0  S IG G R A P H .  A L L  R IG H T S  R E S E R V E D . 10

Irradiance
Caching

Path
Tracing

Irradiance caching tends to converge rapidly on diffuse materials. Path tracing converges 
very quickly on highly specular surfaces. For other, moderately glossy materials, neither 
caching nor simple path tracing can provide fast and accurate results. 
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RADIANCE CACHING: FILLING THE GAP
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Irradiance
Caching

Path
Tracing

Radiance
Caching

In the search of the ‘one’ algorithm, the development of Radiance Caching aimed at 
bridging the gap between caching techniques and brute force path tracing by providing a 
caching method suitable for storing directional radiance information. 
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OBSERVATIONS: SLOW SPATIAL VARIATIONS
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When observing the behavior of glossy interreflections on rough surfaces, we can see the 
assumption of slow spatial variations still hold. We could therefore use the principles of the 
existing irradiance caching scheme on glossy surfaces.
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OBSERVATIONS: VIEW DEPENDENCE
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The main difference between diffuse and glossy surfaces lies in their directional 
component: for a given incoming light direction, this light will be mostly reflected in a 
specific direction. 
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GLOSSINESS: HOW?
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This directionality is described by the Bidirectional Reflectance Distribution Function, which 
dictates how light gets reflected on a surface. The more diffuse, the more uniform the 
BRDF (left). When surfaces are closer to mirrors (right), the BRDF tends to reflect most of 
the light in the mirror direction. 

In order to define a caching scheme adapted to glossy surfaces we therefore need to cache 
some directional radiance information instead of just simple irradiance value.
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SPHERICAL HARMONICS
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Spherical Harmonics are functions defined on the sphere, which define an orthonormal 
functional basis. 
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SPHERICAL HARMONICS PROJECTION
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λ = =

λ0
0

λ1
-1

λ1
0

λ1
1

λ2
-2

Any spherical function can be projected onto the spherical harmonics (SH) basis, creating a 
vector of projection coefficients. Each coefficient is the dot product of the function with a 
given spherical harmonic, ie. the integral of the product of the function with the  SH. A 
perfect projection would require an infinity of coefficients in the general case. For practical 
purposes the number of coefficients is limited, for example to 100. 
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SPHERICAL HARMONICS PROJECTION
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f(ω) =

(ω)
(ω)
(ω)
(ω)
(ω)

Evaluating the value of the projected function for a given direction is achieved by 
computing the dot product of the coefficient vector with a vector containing the SH 
functions evaluated for that direction.
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SPHERICAL HARMONICS ROTATION
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Rθ(f) = θ
A projected function can be easily rotated using a rotation matrix, that can be efficiently 
generated. It is also possible to generate approximate rotation matrices much faster.
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SPHERICAL HARMONICS DOT PRODUCT
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f    L = 

A most important property of spherical harmonics (and other orthonormal bases) is the 
ability to compute the dot product of two projected functions. If the incoming radiance and 
the BRDF are projected into SH, the dot product of those functions is a simple dot product 
of the coefficient vectors. 
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INTERPOLATION
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p1

p2p

λp = α λp1 + (1- α) λp2 

Interpolating two projected functions can be efficiently achieved by a component-wise 
linear interpolation. When storing SH-projected incoming radiance functions at points p1 
and p2, one can rotate them to match their local frames, and interpolate them to obtain an 
approximate incoming radiance function at point p. The dot product with the BRDF at point 
p then yields the actual reflected radiance in a given viewing direction. 
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RADIANCE GRADIENTS
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Reality

p1 p

With radiance 
caching

p1 p

Li(p1) Li(p1) != Li(p)
Wrong extrapolation

= Li(p)

Irradiance caching required irradiance gradients to avoid artifacts due to the extrapolation 
of irradiance values in the validity radius of the samples. Those artifacts are even more 
visible on glossy surfaces. The original gradients formulation cannot easily adapt to any 
sample distribution, and is focused on irradiance only. 
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RADIANCE GRADIENTS
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RealityWith radiance 
caching

Filling in the gaps required the definition of a new way of extrapolation information from 
the incoming radiance function in the radiance records. First, thanks to the ability to rotate 
spherical harmonics, the rotation gradient becomes obsolete. 
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STRATIFIED SAMPLING
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The translation gradient takes into account the actual stratification used in the sampling. 
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STRATIFIED SAMPLING
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Wall movement

In a way similar to the original gradients, this approach attempts to compute the 
movement of the walls of the cells with small movements around the records location p. 
Intuitively, we aim at determining the energy transfer between the stratification cells due 
to that movement. 
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TRANSLATION GRADIENT FROM WALL MOVEMENTS
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Cell area change
Incoming radiance change

Weight by the
basis functionSum together

With a small movement on either axis of the tangent plane each cell would undergo a small 
change in its area, as well as an energy transfer with its neighboring cells. The gradient is 
then the product of those changes with the spherical harmonics functions (or any other 
(hemi)spherical basis). 
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RADIANCE GRADIENTS
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Those SH-enabled gradients allow for a smoother interpolation of radiance functions, and 
hence drastically reduce the visual artifacts. 
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ADAPTIVE CACHING & NEIGHBOR CLAMPING
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Radiance caching defines a theoretical framework for extending irradiance caching to 
glossy surfaces. However, this approach suffers from two major practical issues: first, even 
though the indirect lighting tends to vary slowly over surfaces, in some cases (such as the 
reflection of the blue box, left) faster variations are not detected. Second, rays leaking due 
to geometry imperfections tend to result in overestimated record size, and underestimated 
incoming radiance (dark cercles, right). 

27



ADAPT TO GRADIENT MAGNITUDE

©  2 0 2 0  S IG G R A P H .  A L L  R IG H T S  R E S E R V E D . 28

p1 p2
p

If | L1(p) – L2(p) | > t  
then decrease radius Based on the Weber law

The artifacts in the reflections are due to the use of the “split sphere” model of irradiance 
caching to determine the validity radius of a radiance record. With glossy surfaces this 
model does not represent the worst-case scenario, resulting in a possible overestimation of 
the radius. Adaptive caching addresses this problem by comparing the radiance values 
provided by neighboring records. If the difference between the radiances extrapolated 
from point p1 and p2 is too high, then the radii of those records is reduced. This, in turn, 
allows the algorithm to add more records in that area and increase the fidelity of the 
reconstructed radiance.
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NEIGHBOR CLAMPING
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p2p1

p2p1

Neighbors also provide valuable information to reduce the impact of outliers. By 
construction new records are only created in the scene areas where no existing record can 
contribute. Therefore, a record that encloses one of its neighbors is most likely an outlier 
with an excessive radius (left). From this observation the neighbor clamping algorithm 
reduces the radius of potential outliers so that no record overlaps the center of its 
neighbors (right). 
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RADIANCE CACHING ON GRAPHICS HARDWARE
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The radiance caching algorithm is based on the progressive refinement of a hierarchical 
data structure, and gathering operations using nearest-neighbor queries on this structure. 
Graphics hardware are more suited to simpler structures, and scattering operations are 
usually more efficient than gathering ones. 

The irradiance and radiance caching algorithms are both based on a notion of validity 
radius around records, plus some requirements on the surface normals. Those algorithms 
can then be reversed: instead of finding nearby records in an octree, each record can be 
splatted on the image plane, with alpha blending taking care of the interpolation. 
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PRODUCTION RENDERING
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Radiosity Map for Ratatouille © PixarIrradiance Caching in Shrek 2 
© PDI/Dreamworks

Irradiance caching has been used extensively in production rendering. 
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FURTHER READING
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Jaroslav’s research journey began with filling the gaps between irradiance caching and path 
tracing. The book `Practical Global Illumination with Irradiance Caching` provides many 
solutions to improve the robustness of both irradiance and radiance caching. As this 
solution was only a step towards the search for a single algorithm for light transport, the 
shortcomings of radiance caching encouraged him to develop  many significant 
contributions, such as the unification of points, rays and beams, and research on ray 
guiding that are described in the following sections of the course.
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Autodesk

Sampling paths

Iliyan Georgiev

In this section we will view rendering as the problem of finding light trajectories that carry energy 
from the light sources to the camera. We will show how this formalism enables devising novel 
rendering methods as well as combining different methods in a way that preserves their individual 
strengths. 
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In 1995, Eric Veach introduced the path integral formulation of light transport, which expresses the 
problem of computing the value of a pixel as a conceptually simple integral over the space of all 
trajectories, or paths, connecting the light source in the scene to the camera through an arbitrary 
number of bounces at surfaces or in media. #e contribution of each such possible path is the product 
of terms, including the BSDF/phase function at each vertex, and the mutual position, orientation, and 
transmi$ance between subsequent vertex pairs. 

#is light transport integral can be estimated via ordinary Monte Carlo technique, i.e., by 
constructing a random path, evaluating its contribution and dividing by its sampling density. Note 
that if unbiased estimation is desired, the only degree of freedom here is in the choice of path 
sampling pdf. Different sampling methods, or techniques, can only differ in the pdf they use. 

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. 
SIGGRAPH 1995. doi.org/10/d7b6n4
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Such sampling-based approximation introduces error. Averaging over multiple paths reduces this 
error. However, a much more efficient way to achieve that is to importance sample the paths, i.e., to 
use a sampling distribution that to each path assigns a density as closely proportional to its pixel 
contribution as possible. Unfortunately, this is a difficult task due to the complex shape of the 
contribution function, containing many discontinuities as well as singularities (which we will discuss 
below). 

Importance sampling is still achievable in a localized manner, when sampling the vertices of paths in 
succession. Most practical methods employ such form of importance sampling as we describe next. 



Unidirectional path sampling
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A simple and widely used method is unidirectional path sampling. Given an initial vertex on the lens 
and ray through a pixel, the second vertex is determined by sampling a distance proportionally to the 
transmi$ance along the ray. In the absence of participating media this simplifies to (deterministically) 
finding the closest visible surface along the ray. 

Once the second vertex is known, a new direction from it is sampled, typically proportionally to the 
local sca$ering distribution as given by the BSDF or the phase function at that point. A new distance 
is sampled along the resulting ray, and this process continues until a light source has been hit (or the 
path is terminated early, e.g. via Russian roule$e.) 

Interestingly, this process of iterative distance and direction sampling yields a path pdf that is 
proportional to all terms of the contribution function, with the exception of the emi$ed radiance at 
the last vertex. #is technique can perform well in scenes filled with emissive surfaces. However, in 
many practical scenes the light sources are comparatively small and the chance of hi$ing them with 
random rays can be extremely small, resulting in substantial noise in the rendered image. 

One could also perform the sampling in the opposite direction, starting from the light sources; 
however, the chance of randomly landing on the lens is even smaller.



Bidirectional path sampling
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Instead of hoping the last path vertex to land on the light source by chance (1), one could directly 
sample that vertex on the light source (2). #is technique is known as next-event estimation. 

A subpath could also be started from that vertex and connected to the camera subpath (3). With this 
scheme, a path of length k edges (and k+1 vertices; here k=2) can be constructed in k+2 different ways 
(here k+2=7), by varying the edge along which the connection is performed (1-7). Each corresponds 
to a distinct sampling technique identified by the number of vertices s and t=k+1-s, sampled from the 
light and the eye respectively. 
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(s, t) = (4, 2)

explodes when 
distance is small

this technique avoids 
the singularity

When a technique performs a connection between two vertices, it does not importance sample any of 
the path contribution terms associated with these vertices, since the light and eye subpaths are 
sampled independently from each other. 

An issue arises when the two connected vertices are very close to each other in space, e.g. near a 
geometric corner. #e geometry term associated with the edge explodes due to the inverse squared 
distance appearing in its denominator. #e pixel estimate explodes too as the geometry term is not 
importance sampled. #is is a well-known problem in some rendering methods based on bidirectional 
sampling, e.g. instant radiosity (and generally, many-light methods). 

However, for each such case there are other techniques which can construct the same path by 
performing the connection along the other edges. #e pixel estimates of these techniques have much 
lower magnitudes in this case. Notably, the sampling pdfs of these techniques are higher as they 
importance sample the high-magnitude geometry term. 

So there are multiple techniques that can sample the same path, with different efficiency. Ideally we 
want to sample each path using the most efficient technique. However, the best technique for a given 
path can only be identified once it is constructed. An alternative is to use all techniques but weigh 
their estimates based on their efficiency. 



Multiple importance sampling (MIS)

hIii =
f(x)

pi(x)
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wi(x) =
pi(x)

p1(x) + · · ·+ pn(x)
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Given an integral and  estimation techniquesn

Weighted combination Balance heuristic

I =

Z
Ω

f(x)dµ(x)
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Multiple importance sampling (MIS) provides a way to achieve this. Given  techniques, with  
samples  for each, drawn from pdf , the MIS estimator combines all estimates. A weight is 

applied to each estimate which is normalized for each sample independently, over all other 
techniques. 

#ere is a lot of freedom in the choice of weighting function. #e balance heuristic is a provably good 
choice, which weighs techniques proportionally to their sampling pdf. #is provides a combination 
that preserves the qualities of the individual techniques and ameliorates their inefficiencies. 

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. 
SIGGRAPH 1995. doi.org/10/d7b6n4

n ni
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Bidirectional path tracing
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Combined MIS pixel estimator:

# vertices 
from light

# vertices 
from eye

MIS is a general-purpose variance reduction technique for Monte Carlo integral estimation. #anks 
to the formalizing light transport as a pure integration problem, MIS can be applied in this se$ing. 

Bidirectional path tracing applies MIS to combine the pixel estimates of all possible vertex connection 
techniques. By weighing each technique proportionally to its sampling pdf, it gracefully handles 
geometric singularities – techniques that do not importance sample the high-magnitude geometry 
term are assigned proportionally lower weights.



Bidirectional path tracing

Unidirectional + next-event Bidirectional path tracing

Here we compare the commonly used MIS combination between unidirectional sampling and next-
event estimation against full bidirectional path tracing (BPT). #anks to combining many more 
techniques, BPT handles the complex lighting in this scene a significantly more robustly, especially 
the caustics on the table. 

Unfortunately, BPT is notoriously inefficient in rendering caustics that are seen through reflection or 
refraction. #is is because none of the techniques it combines can sample (i.e. find) such specular-
diffuse-specular paths with high enough probability. In literature, this issue has been referred to as 
“the problem of insufficient techniques”. Recent work has addressed this problem, as we will discuss 
next. 

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. 
SIGGRAPH 1995. doi.org/10/d7b6n4



Combining bidirectional path tracing 
and photon mapping

In the previous section, we showed how the path integral formulation of light transport enables 
robust estimation by efficiently combining various sampling techniques. We will now discuss how we 
can leverage this framework to address the problem of insufficient techniques by combining photon 
mapping and bidirectional path tracing via MIS.



Bidirectional path tracing

Bidirectional path tracing is one of the most versatile light transport simulation algorithms available. 
It can robustly handle a wide range of illumination and scene configurations, but is notoriously 
inefficient for specular-diffuse-specular light interactions. #is is seen in the caustic reflections seen 
in the mirror and the window. 



Progressive photon mapping

And here is the same scene rendered with progressive photon mapping. Photon mapping [Jensen 
1997] is well known for its efficient handling of caustics, and this progressive variant [Hachisuka and 
Jensen 2009] converges to the correct result with a fixed memory footprint. It reproduces the 
reflected caustics in the scene well, but it has a hard time handling the glossy reflections on the table 
and the strong distant indirect illumination coming from the part of the scene behind the camera. 

Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA. 

Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5.   
doi.org/fv7fmg



Combined algorithm

We will show how to combine estimators from bidirectional path tracing (BPT) and photon mapping 
(PM) to find a good mixture of techniques for each individual light transport path and to produce a 
clean image in the same amount of time.



Bidirectional path tracing vs photon mapping

Bidirectional path tracing Photon mapping

Unidirectional sampling Vertex connection Density estimation

Let us quickly review the techniques BPT and PM use to construct light transport paths connecting 
the eye and the light sources. 

#e BPT techniques can be roughly categorized to unidirectional sampling (US) and vertex 
connection (VC). US samples a path by starting either from a light source or the eye and performs a 
random walk until termination. On the other hand, VC traces one subpath from the eye and another 
subpath from a light source, connecting their endpoints. 

In contrast, PM first traces a number of light subpaths and stores their hit points (a.k.a. photons). It 
then traces subpaths from the eye and employs photon density estimation to compute the outgoing 
radiance at the eye hit points.



Problem & solution

☹ Problem: different mathematical frameworks
■ BPT: Monte Carlo integration

■ PM:  Density estimation

☝Key idea: Reformulate photon mapping as a path sampling 

technique
■ Formalize a path sampling technique

■ Derive path pdf

.   .   .

p(x) = p(x0, x1, . . . , xk−1, xk)

x0
x1 xk−1

xk

It has been long recognized that BPT and PM complement each other in terms of the light transport 
effects they can efficiently handle. However, even though both methods have been published more 
than 20 years ago, a rigorous analysis of their relative performance and their efficient combination 
have remained elusive until very recently. #e reason for this is that BPT and PM have originally 
been formulated in different theoretical frameworks – BPT as a standard Monte Carlo estimator for 
the light transport integral, and PM as an outgoing radiance estimator based on photon density 
estimation. 

#e first step toward combining these two methods is to put them in the same mathematical 
framework. #e path integral framework is a natural choice: it already subsumes the BPT techniques 
and also hosts MIS. 

We need to do two things: (1) express PM as a sampling technique that constructs light transport 
paths connecting the light sources and the camera, and (2) derive the pdf for the paths sampled with 
that technique. #is will give us a basis for reasoning about the relative efficiency of BPT and PM. 
And more importantly, it will lay the ground for combining their corresponding estimators via MIS.



Bidirectional sampling
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pVC(x) = p(x0) p(x0 → x1)
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×

Light vertex

Camera vertex

Let us consider a simple length-3 path. We first trace one subpath from the camera and another one 
from a light source. Now let us see how we can complete a full path. 

Bidirectional path tracing (le') connects the subpath endpoints deterministically. We call this 
technique vertex connection (VC). #e sampling density of the resulting full path is simply the 
product of the densities of two independently sampled subpaths. 

On the other hand, photon mapping (right) extends the light subpath with one more vertex. Pixel 
contribution is made if that “photon” lands within some distance r from the eye subpath end point. 
#e joint pdf of all sampled vertices is derived similarly to VC, since again the subpaths are sampled 
independently. 

However, this is not sufficient for applying MIS to combine with VC. #e reason is that with this 
interpretation the two methods sample paths with different numbers of vertices, and consequently 
their pdfs have different units. Plugging these PDF into MIS wouldn’t produce a meaningful result, 
because the heuristics expect all pdf to be expressed w.r.t. the same measure. A meaningful MIS 
combination needs the pdfs to have the same measure.
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Extended path space formulation
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Extended vertex connection
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πr2

Light vertex
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To address these issues, Hachisuka et al. [2012] express the vertex connection PDF in the higher-
dimensional space of photon mapping. #ey consider an extension of vertex connection that samples 
a vertex  by randomly perturbing the eye vertex  within an -neighborhood. #is new vertex 

corresponds to the photon vertex in PM and is connected to the last light subpath vertex. Assuming 
that the surface in this neighborhood is locally flat, i.e. that the region is a disk, the PDF of the new 

vertex is . 

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport 
simulation. ACM Trans. Graph. 31 (December). doi.org/gbb6n3
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Alternatively, we can stick with the original VC technique and instead express PM as a technique in the lower-
dimensional space of VC [Georgiev et al. 2012]. 

To that end, we can interpret the PM sampling process as establishing a regular vertex connection between the 
end points  and , but conditioning its acceptance on the random event that the “photon” vertex  sampled 

from  lands within a distance  to . #is probabilistic acceptance is simply a Russian roule$e decision. 

#e full path pdf is then the product of the two VC subpath pdfs, as on the le', but in addition multiplied by the 
probability of sampling the photon vertex  within in an -neighborhood of . #is acceptance probability is 

the integral of the pdf of  over that neighborhood. Assuming that this neighborhood is a disk again, and also 

that the density of the photon is constant inside this disc, the integral can be approximated by the pdf of the 
actually sampled point , multiplied by the disc area . 

We dub this technique vertex merging (VM), as it can be intuitively thought to weld the endpoints of the two 
subpaths if they lie close to each other. 

Note that while in the interpretation of Hachisuka et al. [2012] we had  in the VC pdf denominator,  in the 
VM interpretation, this term appears in the pdf numerator. Both interpretations result in the same MIS 
combination weights. In the remainder of the discussion we will use the VM interpretation, but the final 
combined algorithm I will present is identical with both interpretations. 

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and 
merging. ACM Trans. Graph. (Proc. of SIGGRAPH Asia). doi.org/gbb6q7
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Available sampling techniques

Unidirectional 2 ways

Vertex connection 4 ways

Vertex merging 5 ways

Total 11 ways
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Having formulated the vertex merging path sampling technique, we can put it side by side with the 
already available techniques in BPT. #ere are two ways to sample a length-4 path unidirectionally, 
and four ways with vertex connection. Vertex merging adds five new ways to sample the path, 
corresponding to merging at the five individual path vertices. In practice, we can avoid merging at 
the light source and the camera. 

But with so many ways to sample the same light transport path, one might ask: How efficiently do 
these different techniques handle various types of paths?



Caustic case: with path reuse

Diffuse light

Diffuse surface

Mirror surface

A A

Vertex merging

10k paths/pixel

Unidirectional sampling
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To answer this question, let us first take a look at specular-diffuse-specular (SDS) paths. Here, BPT 
can only rely on unidirectional sampling: it is forced to trace a path from the camera and hope it 
randomly hits the light source. With vertex merging, we can trace one light and one camera subpath, 
and merge their endpoints on the diffuse surface. 

It can be shown that if the light source and the merging disk have the same area, then unidirectional 
sampling and vertex merging sample paths with roughly the same probability density. Perhaps 
surprisingly, this means that we should expect the two techniques to perform similarly in terms of 
rendering quality as they are equally likely to find such paths.  

To verify this, we render these images with both the US and VM techniques progressively, sampling 
one full path per pixel per iteration: For US we trace paths from the camera until they hit the light or 
escape the scene. For VM, we trace subpaths from both ends, and merge their endpoints if they lie 
within a distance  from each other. Both images look equally noisy, even a'er sampling 10,000 paths 
per pixel. #is result confirms that vertex merging, and thus photon mapping, is not an intrinsically 
more efficient sampling technique for SDS paths than unidirectional sampling.



Caustic case: with path reuse

Diffuse light

Diffuse surface
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Vertex merging
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However, VM has one advantage – computational efficiency. For each pixel, we can very cheaply 
reuse light subpaths traced for all other pixels, at the cost of one range search query. #is allows us to 
quickly construct orders of magnitude more light transport estimators from the same sampling data, 
and with minimal computational overhead, resulting in a substantial quality improvement. 

For all three images above we have traced roughly the same number of rays. #e only difference 
between the center one and the right one is that the for right one we have enabled path reuse: at 
every rendering iteration we store and looking up the light-subpath vertices in a photon map. It is 
this efficient path reuse that makes PM be$er than BPT for SDS paths.



Diffuse case

Vertex mergingVertex connection Unidirectional sampling

Roughly equal sampling densities
Diffuse light

Diffuse surface
pUS = pVM ≈

pVC

100,000

Let us also look at another extreme example – direct illumination on a diffuse surface. Here, VC can 
construct a connection edge to the vertex sampled on the emi$er, while US and VM both rely on 
random direction sampling from or to the light. 

Once again, it can be shown that if the emi$er and the merging disk have the same area, then US and 
VM sample this path with roughly equal probability density. For the specific case shown here, this 
density is about 100,000 lower than that of VC. #is demonstrates that VM is not intrinsically more 
efficient than VC either. #is is not surprising if we recall the expression for the VM path pdf. #at 
pdf can be at most equal to that of its VC counterpart, since the VM pdf additionally multiplies by an 
acceptance probability. Nevertheless, by reusing paths across pixels, VM, and thus photon mapping, 
gains a lot of efficiency over US. 

Note that all these insights emerge from the formulation of photon mapping as a path sampling 
technique.



A combined algorithm

Stage 2:

Eye sub-path sampling
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We now have the necessary ingredients to combine PM and BPT into one unified algorithm. #e US, 
VC, and VM path pdf can be used to weight the techniques in MIS, and the insights from the previous 
two slides urges us to strive for path reuse. 

#e combined algorithm, which we call vertex connection and merging (VCM), operates in two 
stages: In the first stage, we trace the light subpaths for all pixels, connect them to the camera, and 
store them in a range search acceleration data structure (e.g. a kd-tree or a hashed grid). In the 
second stage, we trace an eye subpath for every pixel. Upon generating each eye subpath vertex, we 
(1) connect it to a light source, (2) connect it to the vertices of the light subpath paired with that 
pixel, and (3) merge it with the vertices of all light subpaths. We then sample the next eye subpath 
vertex and recurse. 

In a progressive rendering setup, we can perform these two steps once per iteration and reduce the 
vertex merging radius  therea'er. 

Note that while (P)PM performs merging at a single vertex along each eye subpath, VCM performs 
merging at every such vertex, thereby employing significantly more techniques. 

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light transport simulation with vertex 
connection and merging. ACM Trans. Graph. (Proc. of SIGGRAPH Asia). doi.org/gbb6q7
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Bidirectional path tracing

VC

VM

Stochastic progressive photon mapping

Vertex connection and merging Relative VC and VM image contributions

#is scene with various glossy and specular materials is especially difficult for both BPT and (P)PM. 
BPT under-samples reflected and refracted caustics, whereas PPM is known to handle glossy surfaces 
inefficiently. #e combined VCM algorithm is equipped with more sampling techniques than the 
other two methods combined and extracts the best of each to produce an image free of fireflies. 

We also visualize the relative contributions of VM and VC techniques to the VCM image. We can 
observe the regions in which VCM assigns more weight to each of the two family of techniques.



Bidirectional path tracing

VC

VM

Stochastic progressive photon mapping

Vertex connection and merging Relative VC and VM image contributions

#e results on this scene are very similar.



Summary

Reformulate photon mapping as a path sampling technique 

Efficient MIS combination with bidirectional path tracing 

‣ Improved convergence rate over progressive photon mapping 

Reformulating PM as a sampling technique in the path integral framework allows us to augment BPT 
with techniques that efficiently handle the notoriously difficult specular-diffuse-specular light 
transport. 

An important property of the combined VCM algorithm is that it retains the higher convergence rate 
of BPT. #is means that it approaches the correct solution faster than PPM as the computational 
effort increases, i.e. as we sample more paths. In fact, VCM is asymptotically equivalent to BPT, since 
the MIS weight of VM techniques vanishes as the merging radius progressively goes to zero. 
However, the VM contributions bring a significant initial variance reduction. 

Even though VCM has proven very useful in practice, it has some limitations. Most importantly, it 
does not improve over BPT and PM for light transport that is difficult to both BPT and PM. A 
prominent example are caustics falling on a glossy surface.



Combining points, beams, and paths in 
participating media

Given the success of VCM in handling surface sca$ering, a logical next step is to try transfer its ideas 
to improve rendering of participating media.



Goals
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lighting
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lighting

high scattering low scattering

As before, we are looking for an algorithm that can render participating media in a manner that is 
robust to media properties and to lighting, as demanded by the scene shown here. We want to handle 
optically dense or rare media with high or low sca$ering albedo. We want to handle diffusive 
multiple sca$ering (as in subsurface sca$ering) or highly focused lighting (as in volumetric caustics). 

#e algorithm we will discuss has all these features and was actually used to render the above image. 

Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech 
Jarosz. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. (Proc. of 
SIGGRAPH Asia).  doi.org/f6cz72



Volumetric photon-based estimators
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In addition to volumetric bidirectional path tracing (BPT), for media we also have techniques derived 
from photon density estimation, such as volumetric photon mapping (VPM), the beam radiance 
estimate (BRE), and photon beams (PB). 

In media, we can represent radiance either by particles (i.e. photon points) or by particle tracks (i.e. 
photon beams). #e radiance estimate can then be performed at one point or along an entire ray (i.e. 
a query beam). #is gives us four basic types of estimators: point-point, beam-point, point-beam, and 
beam-beam. In practice, we do not use the beam-point estimator because it has similar properties to 
the point-beam one but with a much less efficient implementation. Even with that, a relevant 
question is: Does it make sense to combine all the estimators or do some always perform be$er than 
others?



Points vs beams

100k photon points Reference 5k photon beams

Above we show images rendered with photon points (VPM) and photon beams, at intentionally low 
sample counts to illustrate the error they produce. Intuitively, one may expect that because the beams 
fill up the space so much be$er, they should always perform be$er than points. But in reality, while 
photon beams are very efficient in some types of media, they may be outperformed by points in other 
media.



Points vs beams

Dense mediaSparse media

Beams: ! "

Points: " !

It turns our that beams are be$er in rare media, where the mean free path (MFP) is much longer than 
the density-estimation kernel size. On the other hand, in dense media, when the MFP is shorter than 
the kernel size, points perform be$er.



Combined algorithm (UPBP)
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#e derivation of the path pdfs of these techniques is similar in spirit to that of photon mapping 
discussed above. #e algorithm that combines these techniques with BPT also proceeds similarly to 
VCM. 

In each progressive rendering iteration, we start by tracing a number of paths from the light sources. 
We connect their vertices to the eye, which corresponds to light tracing (1). We store the vertices as 
photon points, and the path segments as photon beams. 

Next, we trace eye subpaths through each pixel. For each segment of a subpath, we look up the 
photons and evaluate to the point-beam estimator (2). We then look up the beams, which is the 
beam-beam estimator (3). 

#en we choose a sca$ering location long the query ray and look up the photons around that point 
to evaluate the point-point estimator (4). We also connect the sca$ering vertex to the vertices of the 
paired light subpath, which corresponds to BPT (5). 

Finally, we extend the eye subpath and repeat (6). 



sparsedense

diffuse
lighting

focused 
lighting

high scattering low scattering

Bidirectional path tracing

Photon beams (beam-beam)

Volumetric photon mapping (point-point)

Beam radiance estimate (point-beam)

Combined algorithm (UPBP)

Let us now see how the various methods perform on the scene from earlier. 

In this scene, the BPT image remains noisy even a'er an hour of rendering. Volumetric photon 
mapping (point-point) overall performs worst. Beam radiance estimate (point-beam) much be$er but 
still not great. Photon beams perform well only on the thin soap medium, producing conspicuous 
artifacts in the other media that resemble the beam shapes. 

#e UPBP algorithm is able to produce a much cleaner image in the same amount of time. It is worth 
pointing out that even though none of the previous algorithms handle this scene well, their 
combination is almost noise-free. #is provides some evidence that the MIS-based combination is 
more robust than a heuristic combination that would be based on selecting a particular estimator for 
each medium.



Beam-beam (photon beams)

Point-beam (BRE)

67

Combined algorithm (UPBP)

Here, point-beam (top) handles the dense media much be$er than photon beams (bo$om) and vice 
versa for the sparser fog. UPBP takes the best of both.  
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Similarly, when we look at the weighted contributions, dense media like the wash-basing are mostly 
covered by the point-beam (BRE) estimator, thinner media like the fog by the photon beams.  

#e fact that BPT is in charge of the surface-to-media transport is quite apparent here: it resolves the 
blue tint to the media due to reflections from the blue tiles on the walls.



Summary

Beams not always better than points 

‣ Sparse media: beams 

‣ Dense media: points 

Efficient MIS combination 

‣ But considers only variance 

Available techniques are often too many 

An important result of this work is that beams are not always be$er than points. Beams are be$er in 
sparse media, and dense media are be$er handled by points. 

Formalizing volumetric photon density estimation methods as path sampling techniques allows 
combining them with traditional sampling techniques with MIS to more robustly handle a wide range 
of media. However the combination relies is based only on variance considerations; taking bias and 
efficiency into account could significantly improve the results. 

We also have to pay a price for combining all the estimators: if one medium is best handled by just 
one estimator, running the other ones only incurs overhead. Having a solid theory that would 
indicate how many samples to take from each estimator would be extremely useful, especially in the 
cases where some estimators could be completely disabled.



Joint path sampling in 
participating media

#e methods we have discussed thus far are all based on generating paths vertex by vertex, using 
only local information to determine the position of the next vertex. However, the path integral view 
of light transport allows for more flexibility in the sampling, namely coordinating the sampling 
decisions across vertices. We will now show how such global sampling can produce substantial noise 
reduction in participating media.



Explicit light sampling: Transmittance
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Given a camera ray and a point on a light source, computing direct lighting (a.k.a. single sca$ering) 
in media involves sampling a distance along the ray which determines a sca$ering location that is 
finally connected to the light point. 

#e traditional way of sampling that distance is with density proportional to the transmi$ance along 
the given camera ray. #is importance sampling scheme ensures that the sca$ering location is more 
likely to occur toward the beginning of the ray where the transmi$ance is high.



Explicit light sampling: Transmittance
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#e contribution of the resulting length-2 path also includes the geometry term along the connection 
segment which, as we discussed previously, is not importance sampled with this scheme. #is can be 
an issue when the light vertex is very close to the ray, creating extreme variation in the geometry 
term. In contrast, the transmi$ance along the ray is always bounded between zero and one.



Explicit light sampling: Equiangular
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Kulla and Fajardo [2012] showed that it is possible to instead sample the distance along the ray 
proportionally to that geometry term, thereby cancelling out its variation. #e technique is very 
simple: it samples the angle between the ray and the connection segment uniformly. Hence, it’s 
dubbed ‘equiangular’ sampling.



Transmittance sampling, 16 spp Equiangular sampling, 16 spp

#is can make for a substantial noise improvement, as we can see in the comparison above.



Explicit light sampling: Equiangular
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To render higher-order sca$ering in a path tracer, we can apply equiangular sampling every time we 
sample a sca$ering direction. 

Note that we now sample two points along each ray: one for the equiangular single sca$ering and 
one (transmi$ance-based) to generate the next path segment for higher-order sca$ering.



Explicit light sampling: Equiangular

Equiangular connectionsTransmittance connections

#is provides good noise reduction over traditional, purely transmi$ance-based sampling, especially 
in the regions around the light source. However, a substantial amount of noise remains, with some 
pixel estimates having extreme magnitudes.
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#e cause of these fireflies is a singularity in the orientation of the rays along which equiangular 
sampling is applied. #e contribution becomes infinite along rays that align with the direction to the 
light vertex. However, the ray sampling densities are proportional to the local sca$ering 
distributions, disregarding the location of the light vertex.



Local vs joint sampling
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Joint path sampling: 

1) Prescribe joint pdf 

2) Derive conditional pdfs via 

     successive joint pdf marginalization 

3) Conditionals are obtained in 

     reverse order

TRADITIONAL: prescribes conditional pdfs, no explicit control over joint pdf

JOINT SAMPLING: prescribe joint pdf, conditional pdfs derived from it

And this brings us back to the point that paths are traditionally constructed incrementally by 
importance sampling some of the contribution terms and only locally at each vertex. Directional 
distributions are proportional to the local phase function, and propagation distances along the 
resulting rays are proportional to the transmi$ance along them. 

#e resulting joint path density is then a consequence of these local decisions. We can only hope that 
it is somewhat proportional to the path contribution, as we ideally want, but we have no explicit 
control over this. Bidirectional path tracing, which samples paths from both ends, also suffers from 
this problem. (When constructing two paths independently, they can go in completely opposite 
directions.) 

#is answers why existing methods can produce so noisy images: they prescribe the local sampling 
decisions, and the final joint distribution is only a consequence of these decisions. 

Importance sampling theory postulates that we should ideally do is the opposite: prescribe the joint 
distribution for the entire path, and then derive the vertex sampling decisions from that joint. Only 
this way can we make sure that the path density is indeed proportional to all contribution terms we 
want to importance sample.



Joint path sampling
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Here is a more specific problem statement. We are given a vertex on a camera subpath (here a point 
on the lens) and another one on a light subpath (here a point on an emi$er). Our goal is to construct a 
subpath of length 3 (edges) connecting these two vertices,  and , by sampling two new vertices,  
and , from a prescribed joint distribution. 

We choose this joint distribution to be proportional to the product of the geometry and sca$ering 
terms on the connection subpath (the terms shown in blue), as these terms contribute most to the 
variation in the path contribution. In isotropically sca$ering media, the phase function is constant and 
the joint is only proportional to the geometry terms. (Anisotropic sca$ering can be handled via 
compact tabulation; we will show results below.) 

Having prescribed the joint distribution, the corresponding vertex sampling routines can be derived 
via successive marginalization of the joint. To make this problem tractable, we also assume that we are 
given a direction from the  eye vertex . #e distance to  should then be sampled proportionally to 
the inverse distance between  and  (1). It is then particularly crucial to importance sample the 
subsequent direction , due to the singularity at . #e derived importance sampling routine 
correctly cancels this singularity (2). #e final distance needs to be sampled with density proportional 
to the inverse squared distance between the resulting vertex  and , which is precisely what the 
equiangular sampling technique discussed before does. 

Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint importance 
sampling of low-order volumetric sca$ering. ACM Trans. Graph. (Proc. of SIGGRAPH Asia). doi.org/gbd5qs
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path lengths 1-3
isotropic phase function

EquiangularTransmittance Joint sampling

As evident in these images, importance sampling all the geometry terms jointly cancelling out the 
singularity, producing 3 orders of magnitude reduction over classical transmi$ance based sampling 
and eliminating all fireflies. #e sampling technique is analytic and only requires a few lines of code.



EquiangularTransmittance Joint sampling

path lengths 1-8
isotropic phase function

#e method only constructs short subpath connections, but it can be applied to render higher-order 
sca$ering as well, similarly to how we extended classical path tracing with equiangular light 
connections earlier. #at is, the input ray to the subpath connection construction can be on an 
arbitrary-length eye subpath. #e variance reduction remains significant.



Joint tabulated path samplingTransmittance connections

path lengths 1-3
anisotropic phase function

In the general case, where the phase functions are anisotropic, deriving analytic expressions is 
difficult. An alternative is to resort to numerical marginalization of the prescribed joint distribution 
via tabulation. For a given phase function, the tables can be pre-computed once before rendering. #e 
curse of dimensionality can be avoided by exploiting symmetries in the geometric configuration, 
which significantly reduces the table dimensionality, keeping the full joint tabulation compact and 
practical. #e visual improvement in this case is visually even more striking. 



Joint tabulated path samplingTransmittance connections

path lengths 1-8
anisotropic phase function

Again, even though the technique is designed for joint importance sampling of paths of up to length 
3, using it as a general-purpose connection technique delivers significant variance reduction for 
higher-order sca$ering as well.



Summary

Importance sampling across light bounces 

Substantial improvement in the presence of singularities 

High-order scattering remains challenging 

Ideally incorporate surface scattering

Traditional Monte Carlo path sampling techniques for participating media are a legacy from surface 
rendering. A$acking media directly allows taking advantage of the extra dimensionality and devising 
joint importance sampling of sequences of path vertices. #is paves the way to thinking about light 
transport differently, by considering entire subpaths instead of individual points. 

While the presented method can significantly outperform previous approaches, there is still a lot of 
room for improvement. For instance, since it only importance samples connections of up to length 3, 
the method is not as efficient for higher-order sca$ering as it is for single and double sca$ering. 

In addition, the distributions do not take into account surface sca$ering, making the method sub-
optimal even for double sca$ering paths that include a surface interaction. Incorporating surface 
sca$ering can lead to further improvements.
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6 Zero-Variance Theory for Efficient Subsurface Scattering
Eugene d’Eon and Jaroslav Křivánek1

6.1 Introduction

The topic of this chapter is zero-variance Monte Carlo schemes and their use for improving the conver-

gence rates of Monte Carlo subsurface scattering (SSS) calculations for image synthesis. We expand

upon a previous work by the authors [Křivánek and d’Eon 2014] and include several new result such as

• Two new perfectly-zero-variance half-space escape schemes,

• Zero-variance theory for generalized radiative transfer (GRT) (non-exponential random media),

• An exit-resampling procedure for asymptotic/Dwivedi guiding that better accounts for the impor-

tance change near boundaries.

6.1.1 Brute Force Subsurface Scattering

Brute force Monte Carlo subsurface scattering is now commonplace in production rendering soft-

ware [Chiang et al. 2016; Kulla et al. 2018; Fascione et al. 2018; Christensen et al. 2018; Georgiev

et al. 2018]. This approach works by sampling random walks/flights inside a participating medium to

connect illuminated surface points to nearby exit points (Figure 1). These random walks are unbiased

Monte Carlo estimators of fully general bidirectional scattering-surface reflectance-distribution func-

tions (BSSRDFs) [Nicodemus et al. 1977] and so are highly flexible and accurate. However, they can

be considerably slower than methods that use approximate BSSRDFs. In this chapter we show how

analytic importance functions can be used to guide the sampling of these random walks such that the

efficiency of the method is improved without losing accuracy.

The BSSRDF is what gives rise to the characteristic bleeding of light that makes translucent materials

like human skin appear soft. High quality predictive image synthesis requires that the BSSRDFs are

accurately specified and sampled. However, in contrast to BRDFs that are typically known analytically,

in any practical setting the BSSRDF is a high-dimensional and unknown function. This is because it

follows from the solution to an integral equation for the collision density inside the material and that

solution depends on the shape of the boundary. The boundary, and therefore the BSSRDF, might even

change over time—the BSSRDF of your nose changes as you wiggle your toes (although not measur-

ably). Even in idealized scenarios where exact solutions are known [Williams 2007; Machida et al.

2010; Liemert and Kienle 2013], they are only known in a semi-analytic form and exhibit no obvious

importance sampling scheme for generating outgoing surface positions and directions in a single step.

Approximate BSSRDFs can be sampled very efficiently, however, but at the cost of accuracy.

Most efficient SSS algorithms proposed in graphics [Jensen et al. 2001; Borshukov and Lewis 2003;

Donner and Jensen 2005; d’Eon et al. 2007; Donner et al. 2008; D’Eon and Irving 2011; Christensen

2015] approximate the BSSRDF with a 2D lateral convolution of the incident light based on solutions

of the transport equation in plane geometry and then impose diffusive angular shapes on the outgoing

radiance. Later methods have improved upon the angular domain of this approach [Habel et al. 2013;

d’Eon 2014; Frisvad et al. 2014; Frederickx and Dutré 2017], but lack the general accuracy and flexibil-

ity of the random walk approach in curved geometry. With increasing compute power the trend is more

and more in favour of exact BSSRDFs that satisfy the equation of radiative transfer.

1This chapter contains novel material by both authors that was regrettably not published before Jaroslav’s passing. As such, it

is essential that any reference to this work includes attribution to Jaroslav.



Figure 1: Random-walk SSS can result in long complex paths (illustrated here as dashed lines) in-

side the material that transport light beneath the surface from a point of illumination to some nearby

location. The standard methods for sampling these paths can result in high variance weights due to

longer paths being absorbed more. This chapter discusses guided sampling techniques that reduce this

variance, yielding faster convergence, shorter paths on average, and, therefore, shorter render times.

Despite not knowing the exact BSSRDF itself, we always have a simple Monte Carlo procedure for

importance sampling it: the random walk is generated from alternate sampling of the free-path-length

distribution (moving the position of the walk) and phase function (changing the walk’s direction) until

escape is sampled (with BSDF sampling at the boundary). This procedure follows directly from the

integral equation that the collision rate density inside the material satisfies [Lafortune and Willems 1996;

Raab et al. 2008]. This flexible approach works regardless of the shape of the object, how scattering

and absorption processes inside vary, or what BSDF is on the boundary.

In the absence of absorption inside the volume, the classical random walk method is already zero vari-

ance—every path is sampled in exact proportion to the BSSRDF with unit weight (assuming nothing

inside or on the boundary absorbs light). For such impossibly-white materials, the content in this chapter

has nothing to offer. When absorption is present, however, the weights of this sampling procedure vary

with αn where α is the single-scattering albedo at each collision event and n is the number of medium

collisions along the path (the number of times the phase function is sampled). The main objective of

applying zero-variance schemes to random walk SSS is to remove all variance in the path weight that is

due to internal absorption. Because of the plane-parallel nature of the guiding, these methods also apply

directly to stochastic methods for sampling layered materials using “position-free” walks [Hanrahan

and Krueger 1993; Guo et al. 2018].

6.1.2 Terminology

Much of the zero-variance theory that we apply originates from the neutron transport literature [Kahn

1956; Coveyou et al. 1967; Hoogenboom 2008a]. In this literature, statistically unbiased estimators that

converge to the correct answer are referred to as “fair games”, and an estimator “scores” a value (its

final particle weight, usually). The term “analog” sampling refers to always locally sampling free-path

distributions and phase functions directly from their given distributions in isolation, oblivious to where

light sources or camera sensors lie in the scene. As such, the simulated particle does the physical analog

of a real particle in a physical system [Spanier and Gelbard 1969]. In analog sampling, the particle

weight is always 1 (continue to scatter) or 0 (death by absorption, terminating the walk).

In the context of rendering, analog sampling is only implicitly used for materials like glass and mirrors

that do not lose any energy. The analog sampling of other BSDFs like a Lambertian reflector would

sample outgoing directions and terminate the particle with a probability equal to one minus the diffuse



albedo (equivalent to Russian Roulette that always ensure unit particle weight). Instead, we almost

always directly jump to using “Implicit capture”—a form of variance reduction that uses a statistical

particle weight to account for absorption. In a participating medium, for example, this works by adjust-

ing the particle weight by a factor of the single-scattering albedo α at every collision. When we refer to

“classical sampling”, we mean analog sampling plus implicit capture, which is technique described in

graphics text books [Pharr et al. 2016].

In the neutron transport literature, “biased” can refer to importance sampling anything other than the

analog distributions. When this literature refers to, for example, “biased direction sampling” in the

context of zero-variance theory, they are simply referring to drawing directions from a distribution other

than the phase function and adopting the appropriate weight adjustment to ensure a “fair game”. We

will instead use “guiding”, to avoid any confusion with “statistical bias”.

We will limit our attention to BSSRDF sampling alone and not to the challenging task of sampling the

product of incident illumination with the BSSRDF. This is equivalent to assuming a uniform isotropic

source everywhere on the boundary surface and we use the term “guiding-to-escape” for this class of

problem. However, the same general theory applies (with higher-dimensional importance functions) to

guide SSS random walks when the incident illumination at the boundary is known both in the angular

and spatial domains. In this case, it is common to use a two-stage procedure where an approximate

importance function is predetermined in the volume in some discrete form either using deterministic or

Monte Carlo methods before random walks begin [Turner and Larsen 1997].

We will follow neutron transport and use “collision” to refer to interactions with the medium, which

includes both absorbing and scattering collisions.

6.1.3 Outline

Our main goal in this course is to complement the theoretical literature on zero variance schemes by

working through several examples that clearly illustrate how the theory is applied in practice. A sec-

ondary motivation is to show how the theory can be applied in random media (GRT). After reviewing

related work in the next section we define and motivate GRT in Section 6.3. Several key differences

between classical and non-exponential (non-Beerian) transport are discussed before defining the gen-

eral framework of escaping a half space with isotropic scattering in GRT (Section 6.4). In Section 6.5

we derive two new exactly-zero-variance random walks, one for classical scattering in a rod and one

for a closely related problem of Gamma-2 random flights in 3D. These examples not only demonstrate

that exactly zero variance walks are possible, but also illustrate how such walks differ from classical

unguided walks, and how the notion of adjoint importance (exact or approximate) is used to product

sample free-path-length and angle sampling decisions to guide a random walk towards a zero-variance

version. We review asymptotic (Dwivedi) guiding in Section 6.6 and discuss anisotropic scattering. We

finish with some general tips (Section 6.7).

6.2 Related Work

We recommend Hoogenboom [2008a] for a thorough review of the history of zero variance theory in-

cluding a complete treatment of last-event, collision and track-length estimators. We also recommend

Turner and Larsen [1997] for additional details, but prefer the integral equation approach of Hoogen-

boom, not only because the integro-differential form gets messy, but mostly because of its natural fit for

GRT. The related contributon theory is also worth noting [Williams 1991].

For a survey of methods that use deterministic importance functions for particle guiding, see [Haghighat

and Wagner 2003].

Deep-Penetration Monte Carlo The primary motivation for analytical zero-variance estimators

is for shielding calculations in particle transport where the variance reduction for guided vs unguided



walks is many orders of magnitude and the guiding is, on average, towards deeper locations in the

material, as opposed to subsurface scattering, where we guide to escape the volume anywhere, although

typically back towards the entry location. For a recent survey on variance reduction methods for deep-

penetration neutron transport, see [Munk and Slaybaugh 2019].

Condensed History There are several other ways to improve the efficiency of the random walk

approach to SSS. Similarity theory and condensed-history schemes can be used to progressively alter the

analog sampling distributions as the walk is generated in order to simulate more than one propagation

step at a time (for example, making the phase function more isotropic after some number of events,

and adjusting the future mean free path to compensate). In doing this, the history of the particle is

condensed into fewer individual steps. These methods often introduce small errors, but some aspects

of these schemes can exactly maintain desired properties of the uncondensed transport. Condensed

history schemes are highly effective in infinite media, but handling boundary crossing/escape without

significant error is a major challenge.

A variety of condensed history schemes called shell-tracing (in computer graphics [Müller et al. 2016])

begins by finding the largest sphere around a previous collision such that the medium can be consid-

ered homogeneous inside that sphere. The particle is then teleported to that sphere’s surface with an

appropriate weight adjustment [Fleck and Canfield 1984; Moon et al. 2007]. For some problems this

can yield massive gains.

Both condensed history and similarity theory have the most to offer in weakly absorbing materials

where thousands of collisions per walk are common, whereas zero-variance guiding-to-escape schemes

provide more relative benefit when the material absorbs, making the two approaches complementary.

They can be combined using the same steps outlined in this chapter by normalizing the appropriate

product involving the importance function. For use of similarity theory in graphics see [Frisvad et al.

2007; Zhao et al. 2014]. For more on condensed history see [Bhan and Spanier 2007; d’Eon 2016].

Guiding and Importance in Graphics The zero-variance Monte Carlo theory is tightly coupled

to the theory of adjoint estimators and importance. See Christensen [2003] for an excellent summary of

the use of adjoint importance in graphics. We also note several works [Xu et al. 2001; Xu et al. 2006]

that applied the zero variance theory explicitly for global illumination in scenes with no participating

media.

Machine Learning Several recent works have used machine learning to directly importance sample

BSSRDFs on curved domains [Vicini et al. 2019] and to accelerate subsurface transport using learned

infinite medium Green’s functions [Deng et al. 2020]. Almost certainly we will see more applications

involving machine learning to path guiding in volumes. We hope that some of the deterministic princi-

ples that we touch upon in this chapter will inform the design of these methods.

6.3 Generalized Radiative Transfer (GRT)

The transport of waves or particles in a random medium consisting of optically active particles/mi-

crostructure is sensitive to exactly how these particles are distributed. When particles in a region with

a fixed number density are reconfigured to obey positive (clumpy) or negative (repelling) spatial corre-

lation, this will give rise to different attenuation laws and bulk transport (Figure 2). This phenomena

has been long recognized under a variety of names, such as the sieve/package effect [Rabinowitch 1951;

Kirk 1975], the channeling effect [Burrus 1958; Burrus 1960], distributional error [Fukshansky 1987],

or large scale inhomogeneities, clumping, mixing-fraction variations, particle-self-shielding [Randall

1962]. Particle reconfiguration can completely transform the properties of the material from transparent

to opaque [Torquato 2016]. It is desirable to formulate transport theory machinery that can efficiently

account for these effects in order to simulate the broadest class of materials.



(a) independent scattering centers (b) blue noise

Figure 2: The same density of particles reconfigured from an independent distribution (left) to a config-

uration with negative (repelling) correlation yields shorter mean free paths. Here we show 2000 paths

in each image with origins drawn uniformly from the dashed circle extended to their first collision.

The gold standard approach for including distributional effects in random media is with a stochastic

transport equation that permits the material coefficients to become random variables. This approach was

first applied in wave transport [Frisch 1968; Ishimaru 1978], and later to the scalar equation of radiative

transfer [Anisimov and Fukshansky 1992]. Solving for the mean transport over all permissible random

realizations of the system with an averaging step is a rigorous approach but it is challenging to derive

exact solutions from this method without making additional assumptions about the magnitude of the

correlations. The corresponding rigorous Monte Carlo approach is called quenched disorder [Larmier

et al. 2017] and works by sampling a number of explicit random realizations for the medium and then

performing classical (deterministic or Monte Carlo) transport calculations within each. The desired

transport quantities are averaged over the simulated realizations. This approach is also prohibitively

expensive and neither of these rigorous approaches is likely to be directly applied in computer graph-

ics. However, both are important benchmarking tools that can be used to evaluate faster approximate

methods.

One highly efficient approach to approximating the stochastic transfer equation is to adopt a short term

memory and only remember enough of the past to exactly exhibit the free-path-length statistics between

collisions [Randall 1964; Hoffman 1964; Audic and Frisch 1993; Moon et al. 2007; Larsen and Vasques

2011]. This is the foundation of what we will refer to as generalized radiative transfer (GRT) [d’Eon

2019a; Davis and Xu 2014]. This allows a new aspect of random media that classical transport theory

lacks, which is that the distribution of free-path-lengths between collisions pc(s) can be non-exponential

(and the attenuation law non-Beerian). This distribution can be measured from Monte Carlo simulation

in quenched disorder [Audic and Frisch 1993; Moon et al. 2007; Larsen and Vasques 2011] or from

analytical analysis of a given stochastic model for the random extinction coefficient µt [Davis and

Mineev-Weinstein 2011]. The stochastic process of a particle moving through the system is then a

continuous time random walk [Weiss 1983] or, from a time-independent viewpoint, simply a general

random flight based on pc(s) [Dutka 1985].

To apply zero variance theory to GRT we need a transport equation. Two equivalent such equations are

known. The integro-differential-like equation of GRT includes a time-like integration over a memory

variable s—the distance since the previous medium or boundary interaction [Larsen and Vasques 2011].



This increases the phase space of transport with an extra dimension. This memory is required to exhibit

the semi-Markov nature of the particle flight. From a discrete-time point of view (over collision order),

the collision chain is fully Markovian, and the collision-rate density satisfies a generalized Peierl’s

integral equation [Grosjean 1951; d’Eon 2019a]. This is the simpler equation of transfer, closest to

the classical form, where all memory is encoded in pc(s), and from this the zero variance theory is

immediately applicable. These integral equations have been used to generalize the volume rendering

equation in computer graphics [d’Eon 2013; Jarabo et al. 2018; Bitterli et al. 2018].

To summarize, GRT is a non-exponential random flight where intercollision free path lengths are drawn

from pc(s), and absorption and scattering are non-stochastic (do not depend on s). The attenuation law

when leaving a collision is then [Larsen and Vasques 2011]

Xc(s) =

∫ ∞

s

pc(s
′)ds′. (1)

We require a second set of statistics to apply GRT to bounded domains in a form that satisfies Helmholtz

reciprocity. This follows from the need to distinguish between stochastic and deterministic origins in

GRT [Audic and Frisch 1993]. Consider the mean chord length between particles in the medium over

various realizations. We can only begin such paths from an origin where the last collision ended. Thus,

we average over only those realizations with a particle at the origin. This origin is then correlated to the

other particles in the volume and we use the label “c”. In contrast, a deterministic location on a material

boundary lies in all realizations of the system. The statistics for free-path length from the boundary must

average over the full ensemble (these path-lengths are not chords [Lu and Torquato 1992]). This leads

to a related distribution pu(s) for the free-path-lengths to next collision from an uncorrelated origin.

The distribution pu(s) is used for any path leaving a boundary surface or emission from the volume in

an uncorrelated manner. Otherwise pc(s) is used and the two distributions only align for the unique

case of exponential random media pc(s) = pu(s) = e−s/ℓ/ℓ, where ℓ is the mean free path. There is a

related attenuation law from uncorrelated origins given by

Xu(s) =

∫ ∞

s

pu(s
′)ds′. (2)

For an example illustrating why the two distributions differ, see Figure 3.

If any one of pc(s), pu(s), Xc(s), Xu(s) are known, the other three are uniquely determined by simple

relations [d’Eon 2018]. The distribution pu(s) is also known as the equilibrium distribution of free path

lengths, and Xc(s) and pu(s) are proportional [Feller 1971; Tunaley 1974; Tunaley 1976; Weiss 1983].

6.3.1 Radiance and Collision Density

An important distinction between two fundamental transport quantities arises in GRT due to the break-

ing of their classical local proportionality: radiance and collision rate density [d’Eon 2013]. Radiance

L(x, ω) describes the density of particles in flight at position x in direction ω. This tells us what we

would measure if we inserted a tiny camera sensor in the volume and let particles hit that detector. This

measurement is of the particles in flight, not the scatterers in the medium. The collision rate density

C(x, ω) is defined such that C(x, ω)dωdx is the rate at which particles are entering collisions within

positions dx about x and confined to directions in dω about ω. Measuring this quantity is to observe the

medium itself: the scatterers. Only in classical exponential media do we find the local proportionality

C(x, ω) = µt(x, ω)L(x, ω). (3)

In GRT, the extinction coefficient µt(s) = pc(s)/Xc(s) is not a locally defined quantity, and so no local

conversion is possible. Volumes in GRT are therefore specified with pc(s), albedo α and phase function

P , as opposed to absorption and scattering coefficients.
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Figure 3: When scatterers in a random medium are spatially correlated, the free-path length statistics

between collisions are necessarily distinct from those for paths beginning at a boundary interface.

Here we illustrate the case of negatively-correlated convex scatterers separated by a minimum distance

ŝ = 0.065. For paths beginning at the left boundary of a unit thickness slab (solid-black) collisions

can occur arbitrarily close to the boundary and the related path length PDF pu(s) and attenuation law

Xu(s) reflect this. Continuing in the same direction from the first collision to the second collision (red-

dashed), we find path lengths with a minimum length ŝ. The intercollision free-path distribution pc(s)
is therefore identically zero for s < ŝ due to the scatterers separation, and the attenuation law between

collisions Xc(s) is 1 for this initial distance. Note that Xc(s) and pu(s) are always proportional.



Because of the new relationship between radiance and collision density in GRT (and their scalar coun-

terparts, fluence and scalar collision density C(x)), generalization of classical methods require extra

care. Each of these quantities has distinct collision and track-length estimators and diffusion approxi-

mations in GRT, where in the classical case there was effectively only one form of these tools [d’Eon

2019a]. This is important to keep in mind with respect to graphics literature where the integral equation

inside of volumes is always written over radiance

L(x, ω) =

∫ ∞

0

Xc(s)

∫

4π

µsP (ω′ → ω)L(x− sω, ω′)dω′ds (4)

probably for the reason that radiance is the quantity at the camera aperture that forms the final image.

However, it is only the collisions in the volume that the camera sees, not all the particles in flight, and so

the integral equation for collision density is more directly tied to what we integrate in volumetric path

tracing

L(x, ω) =

∫ ∞

0

Xc(s)

∫

4π

αP (ω′ → ω)C(x− sω, ω′)dω′ds (5)

For GRT this becomes a critical distinction: the importance functions needed to guide a random walk

towards zero-variance satisfy the integral equation for collision density

C(x, ω) =

∫ ∞

0

pc(s)

∫

4π

αP (ω′ → ω)C(x− sω, ω′)dω′ds. (6)

The adjoint incoming radiance field in the scene [Novák et al. 2018] is of little use for path guiding.

6.4 Guiding-to-Escape in a Half Space

We turn now to a half space escape problem that will form the basis for much of the following sections.

We assume a homogeneous semi-infinite 3D medium defined by x > 0 with a flat indexed-matched

boundary and isotropic scattering and absorption in the interior (see Figure 4).

6.4.1 Sources and Detectors

A linear transport problem is defined by specifying a medium/scene, its properties and boundaries, and

a set of light sources. We then define a detector sensitivity or measurement functional over the phase

space (typically just a camera in rendering). In the general case, we seek a zero variance estimator that

has particles leaving the sources and arriving at the detectors such that every simulated particle reaches

a detector and reaches it such that the particle weight times the detector sensitivity at that position and

direction is a constant. In this general case, the first step of the zero variance derivation is to determine

the guided spatial and angular distributions from which to leave the sources [Hoogenboom 2008a]. In

the case of BSSRDF sampling, however, our source is always a single element of phase space: an

incident position and direction, which we always sample with weight w = 1. Since we assume a flat

homogeneous geometry, it suffices to only know the incident cosine, and so we will derive 1D families

of estimators over µi. Our detector sensitivity is defined as 1 for all positions and directions that escape

the medium.

6.4.2 The Classical Estimator

We are given as a starting point that a particle arrives at the boundary entering the medium along a

direction with a cosine to the inward normal of µi. The classical estimator proceeds with (see Figure 4)

1. Particle weight w = 1

2. Sample initial displacement s1 from pu(s) and move particle

3. Absorb w → w ∗ α



4. Sample direction ω from phase function P

5. Sample intercollision displacement s from pc(s) and move particle

6. if x < 0 return/score w at the exitant boundary position and direction and terminate the walk

7. goto 3.

6.4.3 The Guided Estimator

The key shortcoming of the classical estimator is that the sampling of pu(s), P and pc(s) are locally

greedy—they are perfect estimators of these normalized distributions, but are ignorant of the end goal,

like playing chess while only thinking one move ahead. We will derive the zero variance estimator for

escaping the half space by guiding each of these three sampling decisions. The distributions that are

required to achieve zero variance depend on the position and direction of the particle right before these

sampling steps are performed and are uniquely determined from a value or importance function W that

satisfies an adjoint integral transport equation for collision rate density inside the volume [Hoogenboom

2008a]. In the final step we will also adjust the escape scoring to use an expected value estimator.

Initial Free Flight: Our first step is to sample the initial free-flight distance s1 from a guided distribu-

tion p1(s) that achieves the zero-variance goal. In sampling s1 from p1(s) instead of pu(s), the particle

must adopt a weight factor of w1(s1) = pu(s1)/p1(s1). After traversing free-flight distance s1 the

particle enters a collision at depth x1 = µis1 with weight w1(s1). Let W (x, µ) be the probability that

a particle entering a collision at depth x along direction with cosine µ eventually escapes the medium.

The expected contribution of our particle after initial displacement is therefore its current state times

the expected total future state, w1(s1)W (x1, µi). For the random walk to be zero variance this result

must be a constant, and that constant must be equal to the diffuse albedo of the medium for incoming

direction µi

w1(s1)W (x1, µi) =
pu(s1)

p1(s1)
W (µis1, µi) = R(µi). (7)

From this we see that p1(x) must be

p1(s) =
pu(s)W (sµi, µi)

R(µi)
. (8)

We see that the guided distribution is the product of the analog distribution and the importance function

with a normalization factor. We don’t need to know R(µi), because we can find it by simply requiring

that p1(s) integrates to 1. For no absorption, we see R = 1,W (x) = 1 and analog sampling p1(s) =
pu(s), as desired.

The Full Guided Estimator: The previous example illustrates the key components of the general

procedure for deriving each step of a random walk in order to achieve zero variance:

• The end state of a guided step will be the resulting particle weight and the particle position and

direction

• The resulting particle weight will be the prior weight times the ratio of the analog and guided

distributions at the sampled distance/direction

• There is a unique probability to escape the medium at the sampled particle position and direction

(importance W ). Care must be taken here to distinguish between entering and leaving collisions.

• The guided distribution must be the normalization of W times the analog distribution.

We will see the details of the remaining steps in the general procedure during the following examples.

To summarize the notation (also summarized in Table 1) of the upcoming guided distributions: absorp-

tion is handled identically to the classical random walk, applying implicit capture per collision with
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Figure 4: For guided BSSRDF sampling we consider the illustrated GRT random walk in a 3D half

space. A particle arriving along a direction with cosine µ0 enters the medium and collides after a

distance drawn from pu(s). Absorption with probability 1 − α occurs at each collision event. If not

absorbed, the particle continues after phase function sampling until exit is sampled. Each zero-variance

derivation assumes some importance function for escape W (x) when entering collision at depth x and

from this follows guided distributions p1(s) for the initial free-path lengths and related distributions for

direction and intercollision length sampling. These distributions and their related weight adjustments

are summarized in Table 1.

weight factor α. Phase function sampling requires polar µ and azimuthal φ angle decisions drawn from

guided distributions P g(µ;x) and a uniform azimuth distribution 1/2π, respectively. The guided az-

imuthal sampling is identical to the analog case because of the plane symmetry of the medium and

detector sensitivity, so the weight factor for azimuthal guiding is wφ = (1/2π)/(1/2π) = 1. For polar

angle sampling, wµ = (1/2)/P g(µ;x) accounts for guiding away from the uniform (1/2) distribution

of isotropic scattering. Weight factor ws = pc(s)/p
g
c(s;x, µ) accounts for the guided intercollision

free-path length sampling from pgc(s;x, µ).

6.5 Two Exactly-Zero-Variance Walks

Achieving a perfectly zero-variance walk for a given problem is almost always more challenging than

estimating the desired quantity, because the importance function is required everywhere in the scene.

However, it can still be useful to apply the theory using an approximate importance W (x), to reduce

the absorption variance. This can improve upon classical sampling even if the geometry is curved,

if the medium coefficients vary with position or if there is other geometry imbedded in the medium.

Since there are several examples with isotropic scattering in half spaces where the exactly zero variance

estimator is possible, we will review those in order to best demonstrate how zero variance walks are

derived and how they differ from the classical estimators.

The first example we consider is for the reflection from a classical half rod with isotropic scattering: a

simplified one-dimensional domain where particles can only move in one of two discrete directions, left

(−) and right (+). Because the collision rate density in the half rod is a simple exponential, the guiding

importance sampling decisions can be handled analytically and we avoid the complexity of the singular

eigenfunctions of the related problem in a 3D half space.



Sampling Decision Analog Guided Weight Factor

Initial free-path length s1 from the boundary pu(s) p1(s) w1 = pu(s1)
p1(s1)

Intercollision free-path length s pc(s) pgc(s;x, µ) ws =
pc(s)

pg
c (s;x,µ)

Direction cosine µ (1/2) P g(µ;x) wµ = (1/2)
P g(µ;x)

Direction azimuth φ (1/2π) (1/2π) wφ = (1/2π)
(1/2π) = 1

Table 1: Summary of our notation for the analog and guided distributions for planar guiding to escape

in a homogeneous GRT volume.

Figure 5: The Albedo problem for the half rod.

The second example we consider is a new derivation for GRT in a 3D half space where free-path lengths

between collision are drawn from a Gamma/Erlang-2 distribution. This zero variance estimator shows

how the zero-variance theory extends to easy handle GRT. We will also see that a projection of this

random walk onto the depth axis is equivalent to our first example in the rod.

6.5.1 The Zero-Variance Walk in the Half Rod: Křivánek’s Walk

We now consider the problem of external illumination reflecting from a one-dimensional absorbing and

scattering half space with isotropic scattering and vacuum boundary conditions (Figure 5). We consider

specifically the rod model2—a simplified one-dimensional domain in which particles can only flow right

or left ([Wing 1962; Hoogenboom 2008b]). This problem corresponds to the classical albedo problem

of linear transport theory [Chandrasekhar 1960], but in a 1D universe—the unique dimensionality for

which the full solution both at the boundary and internally is known exactly in terms of simple explicit

expressions [d’Eon and McCormick 2019].

While 1D rod transport has limited direct physical application [Zoia et al. 2011], study of this problem

provides all of the essential ingredients for building a zero-variance half space walk, without the distrac-

tion of complex importance functions. The rod has been used several times to demonstrate zero-variance

walks [Hoogenboom 1981; Hoogenboom 2008b]. However, to our knowledge, the zero variance walk

we derive in this section is new3.

Let us define the half rod to occupy the positive axis x > 0 with direction ω = 1 corresponding

to flight deeper into the rod and ω = −1 towards the boundary. The phase space for monoenergetic

particles/photons is then R×{−1, 1}. Scattering is isotropic, where each collision draws a new direction

ω from {−1, 1} with equal probability, and the single-scattering albedo is α. This example assumes

classical media with exponential free-path length distributions and attenuation laws pc(s) = pu(s) =
Xc(s) = e−s.

Our random walk begins entering the rod at the boundary x = 0, ω = 1 and proceeds with an initial

free-flight transition followed by a chain of collision and free-flight steps until the particle is either

absorbed or escapes. The analog walk chooses between collision and absorption with a discrete binary

decision and clearly leads to unresolvable variance, so the first step in guided sampling is to use implicit

2Also known as the two-directional or Fermi model
3This result was communicated to the first author by the second author on Nov 24, 2013 and has been named to reflect its

origin.



capture, as is standard in volumetric light transport. This is accounted for by a particle weight w that

beings the walk at 1 and is multiplied by the single-scattering albedo for every collision inside the rod.

Next, following Hoogenboom [2008a], we extend the rod to the full line, letting the exterior portion x <
0 be purely absorbing. This is a mathematical convenience that informs derivation of the importance

function for the entire system that is used to guide the random walk. In this extended interpretation

of the problem, any collision in x < 0 scores the current particle weight and terminates the walk.

Any absorption inside the rod scores 0 and continues. This imparts a last event collision estimator

interpretation on escaping the medium.

We now define an importance (or value) function W (x, ω) for the rod defined as follows: W (x, ω) is the

probability that a particle entering a collision at position x moving in direction ω (before the collision)

eventually escapes the rod. From the assumption of isotropic scattering we see immediately that the

desired importance function is independent of direction ω. This is a hallmark of deriving zero variance

walks for problems with isotropic scattering: the dimensionality of the importance function is greatly

reduced.

We can find W (x) from known solutions for the collision rate density inside a half rod due to external

illumination. The two are directly related, by reciprocity. The specific solution follows from solving

a Wiener-Hopf integral equation with the Picard/Lalesco kernel[Wing 1962; d’Eon and McCormick

2019] (more on this later). The result is

W (x) =

{

(

1−
√
1− α

)

e−
√
1−αx, x ≥ 0

1 x < 0
(9)

where we have set the value to 1 for any position outside of the volume.

We note several important features of this result. For the conservative medium α = 1, W (x) = 1
everywhere because entering a collision anywhere eventually leads to escape, which shows that the

classical random walk estimation of the albedo R is already zero variance. Given W , we immediately

have the final weight of our zero-variance walk, the escape probability, given by

R =

∫ ∞

0

pu(s)W (s)ds =

∫ ∞

0

e−sW (s)ds =
2

α

(

1−
√
1− α

)

− 1. (10)

Initial Free Flight: Following the arguments from the previous section we see that p1(x) must be

p1(x) =
pu(x)W (x)

R
. (11)

We find that p1(x) simplifies to a simple exponential

p1(x) =
(√

1− α+ 1
)

e−(
√
1−α+1)x, (12)

which we can easily importance sample by CDF inversion, giving

x1 = − log(1− ξ)

1 +
√
1− α

(13)

where ξ ∈ [0, 1) is a uniform random variate.

Direction Sampling: For each collision at depth x > 0 we need to sample an outgoing scattering direc-

tion ω such that the future contributions from subsequent collision and escape are perfectly balanced.



Let the guided distribution p+(x) be the probability that the positive direction is sampled after colli-

sion at depth x, and p−(x) = 1 − p+(x) the probability of scattering towards the boundary. This is a

discrete variant of P g(µ;x) described in the previous section. For every collision, the particle enters

with weight w = R/W (x). Immediately following the collision the weight is adjusted by implicit

capture to w′ = αR/W (x). If the particle scatters positive, we have a further weight adjustment of

wω = (1/2)/p+(x) due to guiding away from the analog choice of equal probabilities for both di-

rections. The expected score of the particle having gone right is then the total weight after scattering,

w′wω , multiplied by the expected final score over all possible free-flight distances s,

w′wω

∫ ∞

0

pc(s)W (x+ s)ds = R (14)

Solving this equation for p+(x) we find simply

p+(x) =
1

2
(1−

√
1− α). (15)

Remarkably, this result is invariant to depth—no matter where we collide in the rod, we need to sample

away from the boundary with the same probability that depends only on the absorption level in the rod.

As absorption increases and α decreases, we sample towards the boundary with increasing probability—

paths are guided towards the exit. When there is no absorption (α = 1) we recover the analog phase

function sampling p+(x) = (1/2), as desired.

Direction ω is easily sampled from {p + (x), p−(x)} using a single random number for the discrete

choice. The weight factor due to this importance sampling simplifies to

wω =

{

1
1+

√
1−α

, ω = −1
1

1−
√
1−α

, ω = 1
. (16)

General Free-Path Sampling: The final step in building the zero-variance walk for the rod is to de-

termine the guided intercollision free-path length distribution pgc(s;x, ω) and to handle the case where

the particle exits the volume. Here, pgc(s;x, ω)ds is the probability that we sample a guided distance-

to-collision s falling in [s, s+ ds] when leaving a collision at x in direction ω.

In the case of moving in the positive direction, ω = 1, we need to sample a intercollision distance s+

from a distribution proportional to pc(s)W (x+ s). This results in the same exponential distribution we

saw above for the initial collision depth x1 and so we have

pgc(s;x, 1) = p1(s) (17)

with sampling procedure given in Eq.(13). For free-flight distances s in the negative direction we again

need to sample from the normalized distribution that is proportional to the product of pc(s) and the

importance function pc(s)W (x− s). We find the normalization constant to be

∫ ∞

0

pc(s)W (x− s)ds = e
√
1−α(−x), (18)

resulting in

pgc(s;x,−1) =
(

1−
√
1− α

)

(

e−s(1−
√
1−α)

)

, 0 < s < x. (19)

Like the positive direction case, we again find a distribution that is translationally invariant. The shape of

the PDF beyond the boundary s > x is not important—we only need to observe that this distribution up
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Figure 6: Guided transition kernels T (s) (combining phase function and free-flight sampling) for the

zero-variance walk in the half rod. With decreasing single-scattering albedo α negative displacements

towards the boundary (escape) are increasingly preferred.

to the boundary is an exponential with a mean free path of 1/(1−
√
1− α) and sample that distribution.

Any time a distance past the boundary is sampled, we apply a mean-value weight factor wesc, which is

the ratio of the analog probability for escape to the probably of escaping with the guided distribution

wesc =
Xc(x)

e−x(1−
√
1−α)

. (20)

Finally, if we sample an interior collision s < x, we apply the weight factor for the guided free-path

length

w → w ∗ pc(s)

pgc(s;x,−1)
. (21)

This completes the derivation of the zero-variance walk. We include a Mathematica implementation of

it in the supplemental material.

It is informative to look at combined transition kernel T (s) that combines direction and displacement

sampling together using a signed free-flight distance s where the sign indicates whether or not the depth

of the next collision is closer to the boundary and farther into the rod. We find

T (s) =

{

α
2 e

s(1−
√
1−α), s < 0

α
2 e

−s(1+
√
1−α), s > 0

. (22)

These guided displacement kernels are plotted in Figure 6 for various absorption levels and show how

increased absorption leads to increased preference for negative (towards the boundary) displacements in

order to get the particle out before it is overly absorbed. Figure 7 shows the relative change in particle

weight after a net positive or negative displacement in the rod with the zero-variance scheme. It is

interesting that this shows no discontinuity at 0 displacement.

6.5.2 The Zero-Variance Walk in the Gamma-2 Half Space

In this section we derive the first perfectly-zero-variance walk for escaping an absorbing half space in

3D. To our knowledge, this is also the first zero-variance walk of any form derived for GRT.
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Figure 7: Relative change in particle weight w′ in transitioning a relative distance s in the rod.

Specifically, we consider the 3D half space x > 0 with Gamma-2-distributed free-path lengths between

collisions. Upon specifying pc(s), the following full set of GRT statistics follow [d’Eon 2018]

pc(s) = e−ss, (23)

Xc(s) = e−s(1 + s), (24)

pu(s) =
e−s(1 + s)

2
. (25)

Importance: As in any zero or near-zero variance random walk derivation, we begin with the im-

portance function, which in the present case is the probability to eventually escape the medium (after

any number of subsequent collisions) upon entering a collision at depth x. Because the scattering is

isotropic, the importance function W (x) is independent of the incoming direction of the particle.

We can derive or estimate W (x) in a number of ways. We could tabulate a discrete numerical approx-

imation of W (x) for a given absorption level by taking the mean escape probability of some number

of unguided random walks, each beginning in some narrow interval of depths x0 ∈ [x, x + dx]. Alter-

natively, by reciprocity, we could sample a suitably weighted uniform surface source and tally collision

densities in narrow depth intervals within the medium. We have chosen a problem which admits an ex-

act and very simple importance function in order to clearly illustrate the subsequent steps in determining

the full guided walk. However, all of the following principles apply to any approximate tabulated or

fitted function W (x).

We now derive the exact escape probability for our problem from the Wiener-Hopf integral equation that

applies to the collision rate density inside the volume. The details of this derivation are not essential

to the guiding sampling that follows, but we include these details for completeness. The Wiener-Hopf

integral equation for the collision rate density C(x) with a unit Dirac delta of initial collisions at depth

x0 is

C(x) = δ(x− x0) + α

∫ ∞

0

C(x′)KC(x− x′)dx′. (26)

The displacement kernel KC for Gamma-2 flights in 3D with isotropic scattering follows from [d’Eon



and McCormick 2019; d’Eon 2019b]

KC(x) =
1

2

∫ 1

0

pc (|x|/µ)
1

µ
dµ =

1

2
e−|x|, (27)

which is the Picard/Lalesco kernel [Picard 1911]. From the Fourier transform of the kernel

K̃C(t) ≡
∫ ∞

−∞
KC(x)e

ixtdx =
1

1 + t2
(28)

we immediately have the Green’s function (the solution to Eq.(26)) in terms of the Chandrasekhar H
function for the problem. In general, H is given uniquely by [Ivanov 1994]

H(z) = exp

(

z

π

∫ ∞

0

1

1 + z2t2
log

[

1

1− α K̃C(t)

]

dt

)

, Re z > 0. (29)

For the Picard kernel we find [d’Eon and McCormick 2019]

H(µ) =
(1 + µ)

(1 + µ/ν0)
(30)

where ν0 is the discrete eigenvalue of the transport operator, the unique positive solution of the disper-

sion equation,

1− αK̃C(i/ν0) = 0, ν0 =
1√

1− α
. (31)

If we define the Laplace transform

Lx [f(x)] (s) ≡
∫ ∞

0

f(x)e−sxdx, (32)

then we have, from Ivanov ([1994], Eqs. (19) and (21)), that the double Laplace transform of the Green’s

function is

¯̄
G(s, s0) = Lx [Lx0

[G(x, x0)]] (s, s0) =
H(1/s)H(1/s0)

s+ s0
. (33)

Inverting both Laplace transforms gives the Green’s function G(x, x0), which is the rate density of

collisions in the system at x due to the initial collision at depth x0. However, we only need to invert one

of the Laplace transforms, because we want the total rate of collisions inside the entire half space, which

is conveniently given when s = 0 in Eq.(33). To find the total collision rate 〈C(x0)〉, we therefore take

the inverse Laplace transform of ¯̄
G(0, s0) with respect to s0,

〈C(x0)〉 = L−1
s0

[

H(∞)H(1/s0)

s0

]

(x0) = L−1
s0

[

(1 + s0)ν
2
0

s0(s0ν0 + 1)

]

(x0)

= ν0

(

ν0 − (ν0 − 1)e−
x0
ν0

)

(34)

where here we have used H(∞) = 1/
√
1− α [Ivanov 1994]. The mean absorption per collision is 1−α,

and there are a mean number of collisions given by 〈C(x0)〉, and so the mean energy not absorbed in the

system is (and by normalization, the escape probability) is 1− (1− α)〈C(x0)〉, giving our importance

function for the problem,

W (x) =

{

(ν0−1)e
−

x
ν0

ν0
, x ≥ 0

1 x < 0
(35)



Eq.(35) is, in fact, the exact same importance function for the exponential half rod example above

(Eq.(9)).

The last quantity we need for deriving the zero variance walk is the expected value of our estimator for

a single particle arriving at the boundary along cosine 0 < µi ≤ 1 to the x axis. The known albedo for

the problem is [d’Eon 2019b]

R(α, µi) =

∫ ∞

0

pu(s)W (sµi)ds =
α
(√

1− αµi + 2
)

2
(√

1− α+ 1
) (√

1− αµi + 1
)2 . (36)

Initial Free-Flight Distance: Guided sampling of the initial free-flight distance s1 is found from nor-

malizing the product of the uncorrelated-origin FPD and the importance function at depth µis yielding

p1(s, µi) =
pu(s)W (µi s)

R(α, µi)
= e

−s
(

µi
ν0

+1
)

(s+ 1)

(

µi

ν0
+ 1

)2

µi

ν0
+ 2

(37)

Using three independent uniform random variates ξ1, ξ2, ξ3, we can sample this as a sum of an expo-

nential and an Erlang-2 distribution,

s1 =

{

−m(µi) log(ξ2), ξ1 < 1
1+m(µi)

−m(µi) log(ξ2ξ3), else
(38)

where

m(µ) =
1

1 + µ
ν0

(39)

is a path-length stretching factor.

Guided Direction Sampling: Let us define the new angular importance function

Wo(x, µ) =

∫ ∞

0

W (x+ µs)pc(s)ds (40)

for leaving a collision. This function takes the analog probability pc(s)ds that the next collision is within

ds of s away from the starting position, and multiplies by the probability W (x+ µs) of escaping after

collision there. Integration over all possible s then gives the mean probability of eventually escaping

the medium when leaving a collision at depth x in direction µ. Zero-variance direction sampling then

results from drawing outgoing direction cosines µ from the normalization of P (µ)Wo(x, µ). This is the

same general form we saw when deriving the initial path length but note here the different importance

function Wo. It is essential that each step in the zero variance derivation carefully consider the escape

probability immediately following the action that is being sampled, and to distinguish between pre/post

absorption and collision, or for hitting or leaving a Fresnel boundary, etc.

The analog direction cosine phase function is isotropic P (µ) = (1/2). We seek a guided direction

distribution P g(µ;x) = aP (µ)Wo(x, µ) where constant a is chosen to achieve normalization

∫ 1

−1

P g(µ;x)dµ. (41)

After some calculations in Mathematica, we find

P g(µ;x) =











v2−1
2(µ+ν0)2

, µ > 0

(ν0+1)

(

e
z( 1

µ
+ 1

ν0
)(µ(µ2+2µν0+ν0)−(µ+1)z(µ+ν0))+µ(ν0−1)ν0

)

2µν0(µ+ν0)2
, µ < 0.
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Figure 8: The zero-variance walk in 3D with Gamma-2 flights samples upwelling µ < 0 collisions more

often than downwelling ones. Nearer the boundary the upwelling distribution flattens into a uniform

distribution because all directions lead to escape with negligible attenuation. The downwelling direction

sampling is independent of depth x.

Remarkably, the angle selection in the downward hemisphere (away from the boundary µ > 0) does

not depend on the depth x of the particle. This is because the importance function is a pure exponential.

Gamma-2 random flights are the unique distribution pc(s) that produce this result in 3D under isotropic

scattering.

To sample this distribution over outgoing cosine µ ∈ [−1, 1] we split the sampling into the downwelling

(+) and upwelling (-) hemispheres. Because the downwelling direction sampling is independent of

depth, the total probability of choosing a downwelling direction must too be depth-independent and,

indeed, we find

p+ ≡
∫ 1

0

P g(µ;x)dµ =
1

2

(

1−
√
1− α

)

. (42)

Choosing a downwelling direction with probability p+ we need to sample a direction cosine µ from

P g(µ;x)

p+
=

ν0(ν0 + 1)

(µ+ ν0)2
, 0 < µ < 1. (43)

From CDF inversion we find a downwelling cosine µ+ is sampled using

µ+ =
ν0 + ξ

1 + ν0 + ξ
(44)

where 0 < ξ < 1 is a uniform random variate.

Sampling upwelling direction cosines is more challenging. We need to sample from

P g(µ;x)

1− p+
=

µ (ν0 − 1) ν0 + e
x
(

1
µ
+ 1

ν0

)

(

µ
(

µ2 + 2µν0 + ν0
)

− (µ+ 1)x (µ+ ν0)
)

µ (µ+ ν0) 2

with CDF

∫ k

−1

P g(µ;x)

1− p+
dµ =

(k + 1)

(

ke
x
(

1
k
+ 1

ν0

)

+ ν0

)

k + ν0
, −1 < k < 0. (45)



We did not find an exact sampling procedure for this distribution but found 3 iterations of Newton’s

method started at µ = −0.5 very accurate for the limited testing we undertook.

General Free-Flight Sampling: For downwelling directions we find a simple guided free-path length

distribution by normalizing pc(s)W (x+sµ), similar to the initial free-path length procedure above, but

with pc(s) instead of pu(s) because the particle is leaving a collision and not a deterministic location

on the boundary. We find,

pgc(s;x, µ) =
se−

s
m(µ)

m(µ)2
, 0 < µ < 1, (46)

which is a stretched Gamma-2 distribution with factor m given in Eq.(39) that is easily importance

sampled via

s+ = −m(µ) log(ξ1ξ2). (47)

Note how similar this is to Asymptotic/Dwivedi guiding in the classical 3D half space. This is a di-

rect generalization of the exponential transform that was the original guiding tool of choice in neutron

transport literature [Dwivedi 1982]. Here, we find an analogous stretching of the intercollision free-path

distribution, the Gamma-2 transform, appearing in the exactly-zero-variance walk.

For the upwelling directions, we again find the guided free-path length distribution by normalizing

pc(s)W (x+ sµ), but find

∫ ∞

0

pc(s)W (x+ sµ)ds

=

e−
x
ν0

(

µ (ν0 − 1) ν0 + e
x
(

1
µ
+ 1

ν0

)

(

µ
(

µ2 + 2µν0 + ν0
)

− (µ+ 1)x (µ+ ν0)
)

)

µ (µ+ ν0) 2

Past s = −x/µ we will escape the boundary, so we only need to compute this probability and sample a

continuous depth in the case that we do not escape. We find the escape probability

pesc(x, µ) =

∫∞
−x/µ

pc(s)W (x+ sµ)ds
∫∞
0

pc(s)W (x+ sµ)ds

=
(µ+ ν0)

2(µ− x)e
x
(

1
µ
+ 1

ν0

)

µ (ν0 − 1) ν0 + e
x
(

1
µ
+ 1

ν0

)

(µ (µ2 + 2µν0 + ν0)− (µ+ 1)x (µ+ ν0))

. (48)

If we sample to stay inside the medium, using a random choice ξ > pesc(x, µ) then we sample a

free-path length distance s from

pgc(s;x, µ) =
pc(s)W (x+ sµ)

∫∞
0

pc(s)W (x+ sµ)ds

= − µs (µ+ ν0)
2e−

s(µ+ν0)
ν0

ν0

(

e
x
(

1
µ
+ 1

ν0

)

(µν0 − x (µ+ ν0))− µν0

) , −1 < µ < 0. (49)

We can sample this by CDF inversion finding

s =

ν0

(

−W−1

(

ξ

(

e
x
(

1
µ
+ 1

ν0

)

−1
(

x
(

1
µ + 1

ν0

)

− 1
)

+ 1
e

)

− 1
e

))

− ν0

µ+ ν0
(50)
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Figure 9: The probability of directly escaping the medium with no further collisions pde(x) when

leaving a collision at a depth x in the half space. The guided walk prefers direct escape with increasing

probability as the single-scattering albedo α reduces. For the classical unguided/analog walk, the direct

escape probability is independent of α and equal to 1/2 at the boundary x = 0.

where W−1(x) is a Product Log function.

If an escape is sampled, we incur one last weight factor using an expected value optimization, the

ratio of the analog escape probability to the corresponding guiding escape probability. From depth x
along direction −1 < µ < 0 we escape along the final path length of d = −x/µ. The analog escape

probability leaving a correlated event (the last collision) is then Xc(d). The weight factor for escape is

thus

wesc =
Xc(d)

pesc(x, µ)
. (51)

This completes the derivation of the zero variance walk, and illustrates all of the essential steps in

deriving an exact or near-zero-variance walk for escape a 3D half space with no Fresnel interactions at

the bounadry.

Translationally-Invariant Guiding with Exit Resampling: Our derivation above has taken a

purely sequential approach for determining the guided walk: a complete free-path-length distribution is

determined and sampled, and then a phase function distribution, and back and forth until escape. This

has led to rather complicated distributions in the upwelling hemisphere due to the discontinuity in the

importance function past the boundary. It turns out that many of these complexities can be avoided if

we instead sample directions and displacements assuming a non-truncated exponential importance that

now extends upward past 1 outside of the volume,

W (x) = e−x/ν0 . (52)

Regardless of initial depth, the guided displacement and direction sampling steps using this importance

function reduce to the downwelling equations above but for all directions −1 < µ < 1. The angular

distribution that we sample over the full sphere is now the generalized discrete Case eigenfunction for

our Gamma-2 flight [d’Eon 2019b]

φ(µ, ν0) =
c

2

(

1

1 + µ/ν0

)2

. (53)



With CDF inversion we find sampling of outgoing polar angle µ from

−−2ν0ξ + ν0 + 1

ν0 − 2ξ + 1
, (54)

where ξ ∈ [0, 1] is a uniform random variate. Given outgoing µ, displacement sampling follows from

Eq.(46) for all −1 < µ < 1. The probability that this procedure escapes the volume over all possible

outgoing directions is (using Eq.(48))

pescφ(x) =

∫ 0

−1

φ(µ, ν0)pesc(x, µ)dµ =
(ν0 + 1) e

(

1
ν0

−1
)

x

2ν0
(55)

and it can be shown that this exactly matches the probability of the more complicated scheme above.

The problem is, however, that the outgoing directions leaving the medium, when escape is sampled, are

not the distribution required for zero variance because we messed with the importance function outside

of the volume. However, we can compute the exitant cosine distribution that the zero-variance walk

does produce when starting from x and leaving in a single step,

pe(x, µ) =

∫∞
0

pc(s)Θ(−x− sµ)ds
∫ 0

−1

∫∞
0

pc(s)Θ(−x− sµ)dsdµ
=

e
x
µ
+x(µ− x)

µ
, (56)

where Θ(x) is the Heaviside Function. We can sample direction cosine µ from Eq.(56) using

µ = − x

Wproductlog

(

− exx
ξ−1

) (57)

where Wproductlog is the product log function, typically written as W . Combining these two results, the

walk proceeds with the unclamped distance and angle decisions until escape is sampled. Then we back

up to the last collision prior to escape, resample an outgoing direction using Eq.(56) and jump to the

boundary along that path. The expected-value weight calculation for this escape sampling is a ratio of

angle pdfs times a ratio of escape pdfs,

wesc =
1/2

pe(x, µ)

Xc(−x/µ)

pescφ(x)
. (58)

We will see in the next section that this modified scheme is closely related to asymptotic guiding in a

classical 3D half space and that resampled escape can greatly reduce the variance relative to the method

originally presented for rendering [Křivánek and d’Eon 2014].

It is also fascinating to note that we have just derived two new zero variance estimators for classical

scattering in the half rod, our first example above. Observe that if we enter the Gamma-2 half space by

sampling a uniform (Lambertian) surface source, that the expected analog distance of the first collision

is the simple exponential

2

∫ 1

0

pu(x/µ)dµ = e−x. (59)

From here, all displacements in the 3D space when projected onto the x-axis exactly behave as the

classical exponential walk in 1D. And the final albedo of the 3D Gamma-2 half space under diffuse

uniform illumination is exactly the same as the 1D classical rod:

2

∫ 1

0

R(µ)µ =
2

α

(

1−
√
1− α

)

− 1 (60)



in agreement with (10). We also see the same probabilities for upwelling and downwelling directions

in all three walks. This is a great example of how an importance sampling process can be achieved in

many different ways with auxiliary dummy variables that place the simulation in a higher dimension

space.

Further Considerations: We hope that our zero-variance estimators for the Gamma-2 GRT can

add value in traditional rendering of classical media, despite the different free-path statistics. This

hunch is based on limited testing of rendering objects with the diffuse BRDF for Gamma-2 GRT and

comparing to Chandrasekhar’s H-function BRDF for the classical medium. Both transport BRDFs

exhibit a dusty appearance and significantly differ from the “CG” Lambertian appearance. We notice

very similar appearance between the Gamma-2 and exponential BRDFs (Figure 10), suggesting that

Gamma-2 may be a generally useful replacement for classical transport. The are several other reasons

to consider this proposal. In addition to having an exact zero-variance estimator for thick flat geometry,

the BRDF for Gamma-2 GRT also has a explicit expression, which we call the diffusion transport

BRDF [d’Eon 2019b]

fr(θi, θo) =
α

4π

(

H(µi)H(µo)

µi + µo

)2 (
µ2
i + 3µiµo + µ2

o

µi + µo
− U1

2(1 + µi)2(1 + µo)2

)

(61)

where

U1 =
(

1−
√
1− α

) (

µ2 + 3µiµo + 2µo

) (

µ2
o + 3µiµo + 2µi

)

+
αµiµo

µi + µo

(

µ3
i + µ3

o + µiµo

(

2
(

µ2
i + µ2

o + 1
)

+ 6µiµo + 3(µi + µo)
))

(62)

with the Picard H function given in Eq.(30), and µi = cos θi, µo = cos θo. This avoids the integrals

required to evaluate the Milne H function in Chandrasekhar’s BRDF. Also, this BRDF admits a simple

closed-form albedo mapping. The diffuse albedo R of the Gamma-2 halfspace under uniform illumina-

tion is

R =
α

(√
1− α+ 1

)2 (63)

which easily inverts to single single-scattering albedo α from diffuse albedo R,

α =
4R

(R+ 1)2
. (64)

There may also be opportunity to apply some of the sampling distributions in this zero variance walk to

different types of media with some appropriate fitting procedures.

6.6 Asymptotic (Dwivedi) Guiding

In the last two examples, we saw exact zero variance walks from absorbing half spaces with isotropic

scattering. These were possible because the importance functions were known exactly and were simple

expressions that admitted the required sampling manipulations. This is atypical of practical problems,

even in plane geometry, so now we turn our attention to scenarios where we are forced to assume some

approximate function for importance-to-escape; specifically, the approximation that results from taking

the rigorous asymptotic diffusion term from the exact solution and discarding the transient portion. This

method is highly effective for shielding calculations through optically thick shields because far from

the boundaries, the transient terms in the exact importance function fall off and the resulting guiding

becomes exact. In our previous work we attributed this method to Dwivedi [1982] but it appears that

the original proposal of asymptotic guiding was earlier [Lanore 1971; Marchuk et al. 2013]. See also

several more recent works on the topic [Meng et al. 2016; Medvedev and Mikhailov 2008].



(a) Lambertian (b) Chandrasekhar (c) Diffusion Transport

Figure 10: Comparison of 3 diffuse BRDFs. Chandrasekhar’s BRDF and the new diffusion transport

BRDF for Gamma-2 GRT look very similar, but the latter has a zero-variance random walk and simple

albedo mapping.

Motivation Like the examples above, the asymptotic guiding zero-variance method begins by first

trying to find an exact importance-to-escape function W (x). For classical exponential transport in a 3D

half space with isotropic scattering the Milne kernel arises and is singular. Here, the exact importance

function for escape is not a simple exponential. Instead, we find Case’s exact solution involving a

discrete asymptotic diffusion term (an exponential with a complicated constant) and a transient term

that is an integral of exponentials [Case 1960; McCormick and Kuščer 1973; d’Eon 2016; d’Eon and

McCormick 2019]. This relates to a rich set of results that began with observations by Davison [2000]

and later expanded upon by Case [1960]. The importance function that results can also be equivalently

found via the Wiener Hopf method. The final solution is expressed as a Fourier inversion, and via

contour manipulation the discrete portion of the answer pops out as the residue of a pole, creating a

diffusion result—but not the P1 or “classical” diffusion result—the diffusion length is different. For

anisotropic scattering the same things happens but more than one discrete diffusion term appear as the

phase function gets increasingly peaked.

We now have the exact answer at hand, but an issue arises. The transient portion of the importance

function involves integrals of eigenfunctions that are singular in direction4 and sometimes negative and

so are not amenable to guiding. This has motivated the approximation of discarding the transient term

and assuming the discrete term well approximates the full solution. For escaping a 3D half space, this

becomes simply the translationally invariant W (x) = e−x/ν0 , where ν0 is the discrete eigenvalue of the

Milne kernel.

Discrete Eigenvalue Having made the approximation for W (x) we proceed with the derivation

analogous to the previous example for Gamma-2 GRT. The diffusion length we want follows from

normalization of the guided angle sampling distribution

φ(µ, ν0) =
α

2

∫ ∞

0

pc(s)e
−sµℓ/ν0 =

c

2

(

1

1 + µ/ν0

)

. (65)

Normalizing this polar angle distribution produces the dispersion equation

1 =
αν0 tanh

−1
(

ℓ
ν0

)

ℓ
. (66)

4The eigen expansion of the angular collision rate and radiance inside the volume must include singularities and generalized

distribution “functions” because of the reduced-intensity term from the source at the boundary, which is a delta in direction. In

fact, even with a diffuse source at the boundary, the exact radiance in the volume at each depth is expressed as a superposition of

the singular distributions even though the final result is smooth.



Our approximate importance W (x) follows from finding the positive real root ν0 of this equation.

Eq.(66) is often called a transcendental equation but actually has a closed-form solution [Siewert 1980;

d’Eon and McCormick 2019]. The exact solution is not numerically convenient, so we recommend the

following approximation, with a relative error bounded by 0.0001

ν0 ≈ ℓ
1

√

1− α2.44294−0.0215813α+ 0.578637
α

. (67)

Equation (67) is an order of magnitude more accurate than other piecewise approximations [Winslow

1968; Harel et al. 2020].

The remaining details of the asymptotic guiding scheme are found in several works [Dwivedi 1982;

Křivánek and d’Eon 2014; Meng et al. 2016; Lanore 1971; Marchuk et al. 2013]. We will touch upon

various select topics related to the method and refer the reader to these works for full details.

Weight Factor Simplification It is worth mentioning why this particular form of approximate im-

portance function works so well and why, despite the approximation, undesired weight fluctuations that

plagued earlier attempts to apply the exponential transform don’t arise for this scheme. This happens

because of a synergistic cancellation between weight factors in the direction and step length sampling

steps [Dwivedi and Gupta 1986]. Referring now briefly to the notation in [Křivánek and d’Eon 2014],

the weight adjustment when sampling stretched transition distance picks up a multiplicative weight

correction of

ws =
e−s

σ′
te

−sσ′

t

. (68)

The angle selection incurs a multiplicative weight correction of

wµ =
1

2

1
α
2

1
1−µ/ν0

. (69)

The eigenfunction φ(µ, ν0) that appears in the denominator of wµ mostly cancels with the σ′
t in ws.

When using fitted or tabulated distributions for angle and step lengths that do not exhibit this precise

cancellation there can be low number of paths where significantly high particle weights arise.

We can further simplify the final weight wo after angle selection, absorption and transition, expressed as

a multiplication of the previous weight wi before collision with the other weight adjustments, including

the single-scattering albedo multiplier α, sees significant cancellation, giving simply

wo = wi ∗ α ∗ ws ∗ wµ = wi ∗
ξ
−1+

ν0
σt(ν0−µ)

s

σt
(70)

where ξs was the random number used to sample displacement s.

Curved Geometry and General Lighting For general shapes, multiple importance sampling

(MIS) can be used to combine analog/unguided sampling decisions with guided ones [Křivánek and

d’Eon 2014]. This avoids the increased variance in regions with high curvature where particles exit

the medium where the importance function was expected to be low. Figure 11 illustrates the impact of

this combination of classical and guided estimators. Figure 12 shows the performance of the method

under general lighting. Despite not sampling the product of BSSRDF and lighting, the reduction of the

absorption variance is significant. Also, the average path length is reduced in guiding paths out of the

medium more often than the classical walk. The histograms over path-length for both methods are com-

pared in Figure 14 and examples scattering histories are shown in Figure 13 to more clearly illustrate

how increased absorption alters the set of sampled paths. For expanded results on handling general light

and geometry see [Meng et al. 2016].



(a) Classical (36s) (b) 25% Guided (33s) (c) 50% Guided (29s) (d) 75% Guided (25s) (e) 100% Guided (21s)

Figure 11: MIS between guided and classical sampling.

classical sampling asymptotic guiding (equal time)

Figure 12: A gray material with isotropic scattering and single-scattering albedo of 0.943 under a

variety of illumination conditions. The images rendered with classical sampling use 100 samples/pixel

while with guided sampling can perform 50% more samples/pixel in the same time. The guided sam-

pling assumes uniform hemispherical illumination everywhere on the surface and flat geometry yet still

improves the convergence rate of random walk SSS for curved geometry under arbitrary illumination

conditions.

6.6.1 Fresnel Boundaries

Largely missing from the zero-variance literature is the role of general BSDFs at medium boundaries

and the impact of this on the zero-variance scheme. To see the influence of BSDF interactions on

the derivation, consider the half space: in the downwelling directions the procedure is as before. We

can think of upward angle selection as before but now the probability to leave a collision in an up-

welling direction depends upon the more complicated result of importance from future collisions up

to the boundary plus a new term that considers reflections back into the medium and the total escape

probability, which is now a general BSDF integral over the exitant hemisphere,

∫

4π

fs(ωi, ω)|ω · ~n|Wb(ω)dω (71)



(a) classical (any α) (b) Guided α = 0.99 (c) Guided α = 0.9 (d) Guided α = 0.7 (e) Guided α = 0.3

Figure 13: In each subfigure we show 2000 randomly sampled paths created using either classical

volumetric sampling (a) or the Dwivedi sampling scheme (b-e). The figures have differing scales—the

red arrow is one mean-free-path long and indicates the illumination position and direction. All paths

continue inside the semi-infinite medium with isotropic scattering until an escape is sampled. Each

path is rasterized with the same opacity, regardless of sample weight. Irrespective of absorption level

(the value of α), the classical scheme samples the wide distribution of paths shown in (a), even though

many of these paths are heavily absorbed and contribute negligible energy to the final result. Russian

roulette helps avoid this wasteful sampling, but increases variance of each sample as a consequence.

The Dwivedi sampling scheme we use adapts to the absorption levels of the medium and creates shorter,

important paths more often, while simultaneously decreasing the variance of each sample.

where we define Wb(ω) as the importance function that is the probability that a particle leaving the

boundary along direction ω eventually escapes, which is

Wb(ω) =

{

∫∞
0

pu(s)W (sµ)ds, ω is downwelling

1, ω is upwelling.
(72)

We also have a new sampling decision to make upon jumping to the boundary during the walk, which is

guided sampling of the BSDF. As in the derivation of the other steps, we start with the analog sampling

distribution, the BSDF itself, and multiply it by the corresponding importance function Wb(ω) and

normalize the result. Thus, having arrived at the boundary from inside from direction ωi we must

sample guided direction ω leaving the boundary from the normalization of
∫

4π

fs(ωi, ω)Wb(ω)| cos θo|dω. (73)

For anything but a smooth Fresnel interface, this becomes a complicated problem to sample analytically.

Novel methods will be required to efficiently perform this sampling for rough dielectric interfaces with

multiple scattering [Dupuy et al. 2016; Heitz et al. 2016].

6.6.2 Asymptotic Guiding with Exit Resampling

We briefly tested the exit resampling approach from the Gamma-2 GRT estimator in the case of clas-

sical exponential transport in a 3D half space with isotropic scattering and indexed-matched smooth

boundary. The approach uses the procedure described in prior work [Křivánek and d’Eon 2014; Meng

et al. 2016] but when the translationally-invariant sampling produces escape, we backup and resample

outgoing polar angle, now from

e
x
µ
+x

1− exxE1(x)
(74)

where E1(x) is the exponential integral function. We sampled this using naive rejection and performed

some tests viewing flat patches of half space under uniform white illumination (Figure 15). We found

the reduction in variance for resampled Dwivedi vs Dwivedi ranging from 10 times lower for α = 0.95
to 45 times lower for α = 0.3. We expect the additional sampling time is mostly due to the naive

rejection sampling.



0 10 20 30 40 50 60

0.05

0.10

0.15

0.20

Classical Sampling Path-length Histogram HΑ = 0.9L

0 10 20 30 40 50 60

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Dwivedi Sampling Path-length Histogram HΑ = 0.9L

0 10 20 30 40 50 60

0.05

0.10

0.15

0.20

Classical Sampling Path-length Histogram HΑ = 0.7L

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

Dwivedi Sampling Path-length Histogram HΑ = 0.7L

0 10 20 30 40 50 60

0.05

0.10

0.15

0.20

Classical Sampling Path-length Histogram HΑ = 0.5L

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dwivedi Sampling Path-length Histogram HΑ = 0.5L

0 10 20 30 40 50 60

0.05

0.10

0.15

0.20

Classical Sampling Path-length Histogram HΑ = 0.3L

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

Dwivedi Sampling Path-length Histogram HΑ = 0.3L

classical Dwivedi

Figure 14: Comparison of the distributions of path lengths (in terms of path segment count) gener-

ated by classical sampling (without Russian roulette) and our application of Dwivedi sampling for the

problem of reflection of normally-incident illumination from an isotropically-scattering semi-infinite

medium. The zero-variance-based Dwivedi sampling scheme generates much shorter paths on average

whilst simultaneously decreasing variance (as opposed to Russian roulette). The method automatically

adapts to the single-scattering albedo α of the medium.

This suggests that much of the remaining variance in asymptotic guiding is not so much from errors

in the importance function inside the medium but from not clamping it to 1 outside. While the exit

resampling procedure would not be easy to apply in general curved geometry, this result suggests that

finding a clamped exponential sampling scheme would be well worth the effort.
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Figure 15: Normally-viewed patches of a 3D half space under uniform white illumination rendered

with three estimators, classical (top), standard Dwivedi (middle), and Dwivedi with exit resampling

(bottom). Single scattering albedo from left to right: 0.3, 0.5, 0.7, 0.8, 0.9, 0.95. Each patch is 50 by 50

pixels with 5 samples per pixel. Timings in seconds above each patch. Gamma correction of 2.0.

6.6.3 Asymptotic Guiding in GRT

In Section 6.5.2 we considered a form of GRT in 3D with Gamma random flights that admits an exactly

zero-variance walk analytically. We also saw that asymptotic guiding was not a zero-variance walk,

but could be corrected with exit resampling. We chose this form of GRT because of its mathematical

properties. It is the unique form of GRT in 3D with isotropic scattering where the collision density inside

the volume exactly satisfies a diffusion equation [d’Eon 2013]. Diffusion is not an approximation in

Gamma-2 3D!. While helpful for illustrating how guided walks are derived, we are unaware of any

specific microstructure that would motivate these exact free-flight statistics. It likely corresponds to a

short-length negative correlation of some kind. For more general forms of GRT motivated by observed

spatial variability in the volume coefficients, diffusion will not be an exact answer and asymptotic

guiding or alternative approximate importance functions will be needed.

One popular [Davis 2006; Wrenninge et al. 2017; Jarabo et al. 2018; Bitterli et al. 2018] and practical

GRT model for random media that includes long-range correlations and power-law asymptotics, while

avoiding the more complex Mittag-Leffler functions that satisfy fractional diffusion equations [Liemert

and Kienle 2018], derives from a continuum model of random scattering-particle number densities

drawn from a Gamma distribution, producing [d’Eon 2018; Jarabo et al. 2018]

pc(s) = a(a+ 1)ℓ(aℓ)a(aℓ+ s)−a−2, a > 0 (75)

where the mean free path between collisions is ℓ and a shape parameter a > 0 adjusts the correlation

between scattering events with classical exponential media recovered in the limit a → ∞. The intercol-

lisions distribution pc(s) does not decay exponentially due to the long-range nature of the correlations.

For isotropic scattering in 3D plane geometry, this leads to a discrete Case eigenfunction derivation

of [d’Eon 2019a]

φ(µ, ν0) =
α

2

∫ ∞

0

pc(s)e
−sµ/ν0 =

α

2
(a+ 1)e

aµℓ
ν0 Ea+2

(

aℓµ

ν0

)

, 0 < µ ≤ 1. (76)

The integral diverges, however, in the upwelling directions, so the exponential, and unbounded, impor-

tance function could only be used to guide downwelling direction sampling. This illustrates a failure



of the approach of Case that assumes exponentially-decaying kernels. For this class of flights, the dis-

persion equation admits a pair of complex roots, but no real ν0 eigenvalue exists. It is an interesting

open problem to investigate what asymptotic importance function might apply in this setting and if the

Mittag-Leffler functions that generalize the exponential distribution make an appearance here.

6.6.4 Anisotropic Scattering

Including anisotropic scattering in guiding-to-escape walk derivations complicates things substantially.

The importance function for escape upon entering a collision depends on the cosine µ as well as the

position. The direction sampling is much more complicated, requiring importance to leave a collision

Wo(x, ω) in terms of general direction and to sample the product of this distribution with the phase

function, for which the normalization factor is typically impossible to determine analytically. To address

this issue Lanore [1971] offers some insight. We recommend Ueki and Larsen [1998] for more details

on linearly and quadratrically-anisotropic phase functions and procedures for sampling the product of

the phase function and the importance function, and also [Marchuk et al. 2013].

6.7 General Tips

Validating the Walk When deriving analytic importance functions or fitting tabulated data from

adjoint Monte Carlo simulation it can be helpful to ensure the correctness of these solutions using

forward Monte Carlo simulation to simulate exactly the probability that is needed at a given sampling

step. For example, if we require W (x, ω), the probability for a single particle to escape the medium

upon entering a collision at x into direction ω, then we would start a Monte Carlo random walk at x that

begins by sampling a collision right away, applying α and sampling the phase function with direction

ω before stepping through the volume. Testing this for a variety of absorption levels αs, depths x and

directions ω will validate any adjoint fittings or derivations. If W is off by even a small forgotten factor

of α, the resultant walk will continue to show considerable variance.

Another debugging tool that we found helpful is to check at each collision entry that wW (x, ω) = R.

When an implementation that should be zero variance is not, this can help identify what step is causing

the issue. This can also help identify what steps in an almost-zero-variance walk are causing the most

variance.

Finally, the walk should always reduce to the classical method of analog sampling plus implicit capture

when absorption is removed, α = 1.

Russian Roulette Russian roulette is a common device for reducing the lengths of long random

walks when the weight becomes low [Arvo and Kirk 1990]. However, if the importance function and

its use to guide the random walk are both accurate, then it is most likely that Roulette will only increase

variance and possibly reduce efficiency. Hero wavelength sampling and MIS complicate this conclusion,

however. We recommend undertaking a thorough analysis for your particular problem to determine how

and when to employ roulette with guided walks.

6.8 Acknowledgements

I am grateful to Jaroslav for travelling to New Zealand to work together with me on this topic in what

would become one of the most rewarding and thrilling collaborations I’ve been lucky to enjoy. He

approached the neutron transport literature with great excitement and fascination and with an unwaver-

ing determination to find an exactly zero-variance walk. When our sandbox experiments showed the

potential of Dwivedi’s asymptotic guiding for half space problems he saw exactly how to defeat the de-

ficiencies of the method in curved geometry with MIS and had it working in Manuka within a week—a

feat that would certainly have not happened without him. We lost a gifted researcher from whom we

learned so much, and also a dear friend.



References

ANISIMOV, O., AND FUKSHANSKY, L. 1992. Stochastic radiation in macroheterogeneous ran-

dom optical media. Journal of Quantitative Spectroscopy and Radiative Transfer 48, 2, 169–186.

https://doi.org/10.1016/0022-4073(92)90087-K.

ARVO, J., AND KIRK, D. 1990. Particle transport and image synthesis. ACM SIGGRAPH Computer

Graphics 24, 4, 63–66. https://doi.org/10.1145/97879.97886.

AUDIC, S., AND FRISCH, H. 1993. Monte-Carlo simulation of a radiative transfer problem in a ran-

dom medium: Application to a binary mixture. Journal of Quantitative Spectroscopy and Radiative

Transfer 50, 2, 127–147. https://doi.org/10.1016/0022-4073(93)90113-V.

BHAN, K., AND SPANIER, J. 2007. Condensed history monte carlo methods for

photon transport problems. Journal of computational physics 225, 2, 1673–1694.

https://doi.org/10.1016/j.jcp.2007.02.012.
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WEIDLICH, A., AND MENG, J. 2018. Manuka: A batch-shading architecture for spec-

tral path tracing in movie production. ACM Transactions on Graphics (TOG) 37, 3, 1–18.

https://doi.org/10.1145/3182161.

FELLER, W. 1971. An Introduction to Probability theory and its application Vol II. John Wiley and

Sons.

FLECK, J., AND CANFIELD, E. 1984. A random walk procedure for improving the computational effi-

ciency of the implicit monte carlo method for nonlinear radiation transport. Journal of Computational

Physics 54, 3, 508–523. https://doi.org/10.1016/0021-9991(84)90130-X.
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7 Path Guiding

Figure 2: Dr. Ǩrivánek contributed to development of path guiding, a path sampling
technique, which allows efficient rendering of notoriously difficult light transport con-
ditions. It was adopted in production by Weta Digital already in 2014 and later used
to render for example these shots from Alita: Battle Angel [VHH+19]. It reduces render
times of indirectly lit scenes including effects like specular-diffuse-specular caustics in
eyes, god-rays in vast underwater scenes, or caustics on the lake bed. c©2018 Twenti-
eth Century Fox Film Corporation. All rights reserved.

7.1 Introduction

I will dare to use this opportunity to tell my personal story about my professional rela-
tionship with Jaroslav while introducing topic of this chapter. I started my collabora-
tion with Jaroslav in 2011 as his student while working on bidirectional photon map-
ping [Vor11] for my master thesis. We were looking for a robust algorithm to handle
challenging light transport due to combinations of various glossy, specular, and diffuse
materials in the scene without resorting to fragile heuristics. Jaroslav continued in this
direction and, with his collaborators, they took this idea even further and combined
the bidirectional photon mapping with path tracing, taking the best from both, and
derived VCM1 [GKDS12] path sampling framework (see Chapter ??). Already at that
time, Jaroslav expressed his concerns that complex visibility will be probably prohibitive
in many non-cornell-box-like scenes even for robust bidirectional estimators which are
based on merging and connecting light sub-paths. Indeed, it turned out that with-
out sampling paths in important regions there are almost no samples to be merged
or connected and thus, in turn, efficiency of even advanced bidirectional estimators
diminishes significantly.

We addressed this problem by importance sampling reflected rays based on in-
cident radiance [VKŠ+14] and thus guiding them towards interesting regions which
increases chance that sampled paths would transport significant amount of energy
from lights to our pixels. People had been looking into this problem before us (see
Sec.7.3) and it was just a good time to resume this research. It turned out to be rela-
tively challenging task especially as we were just starting our PhD. However, Jaroslav’s
leadership and his contagious enthusiasm held our team together. For me, the most
important lesson learned on this project was the strength and importance of collab-
oration and team work which Jaroslav always stressed and without which this project
simply would not have worked out.

1At the same time, the same algorithm known as UPS was independently discovered by Hachisuka
and colleagues [HPJ12].
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Important aspect of this 2014 path guiding paper is that it was probably the first
work pointing out that path guiding can be formulated as learning uncertainty and as
such, abundant toolbox of machine learning techniques opened up for exploration
within path guiding context. The on-line learning approach we took enabled us to
apply guiding in scenarios where only a handful of samples occur at early stages of
light transport simulation. Further, this work immediately revealed the importance of
guiding Russian roulette as it turned out that traditional albedo-driven path termination
can work against the path guiding turning its advantages into pure overhead.

We addressed this problem by using learned approximations of light field also to
terminate or split paths in a way that keeps their contributions oscillating around ex-
pected values of our pixels [VK16]. Interestingly, we learned that similar techniques
were already explored within neutron transport context many years ago and are es-
sential part of actively used simulators like MCNP from Los Alamos National Labora-
tory [We17]. Neutron transport frames the path guiding as we know it in computer
graphics within zero-variance sampling theory which was subject of Chapter 6 and
which is an invaluable tool for designing and reasoning about path guiding schemes.

Our work on path guiding revealed an interesting result with the respect of chasing
the “one” sampling algorithm. We observed that guiding unidirectional path tracing
with next event estimation within complex bidirectional estimators can make many
merging and connecting sub-techniques almost redundant. This is still not true for ex-
tremely difficult conditions like caustics due to small light sources like for example real-
istic sun light [VHH+19]. This observation mean, that sampling paths from some tech-
niques can be expensive on time while their contribution is down-weighted within MIS
framework and thus practically only extend the overall render time. This is one (but not
the only) reason why such heavy techniques are not favored in production [VHH+19].
Jaroslav continued to build upon this observation with his students and collaborators
to make complex estimators more lightweight and practical (see Chapter 9).

In this chapter, we first define path guiding (Sec. 7.2) and acknowledge the previ-
ous and pioneering work in this area (Sec. 7.3). From Sec. 7.4 to Sec. 7.8 we go over
Jaroslav’s research into path guiding. In Sec. 7.9, we briefly go over subsequent re-
search in this area done by other researches and finally, in Sec. 7.10 and Sec. 7.11, we
discuss industry impact of path guiding research on VFX industry and possible future
avenues.

In this part, we cover path guiding techniques explored by the team around Jaroslav
Ǩrivánek, show their connection to zero-variance theory and neutron transport, and
discuss the impact of these works to both current research and the industry.

7.2 Define “Path Guiding”

For efficient Monte-Carlo light transport simulation, it is vital to sample paths between
camera and light sources which transfer the highest amount of energy while, at the
same time, avoid wasting computational time on sampling irrelevant paths. In scenes
with complex visibility, we could guide the path sampling and achieve low variance
calculation if we knew the full transport in the scene, which however, is not known a-
priory in practice. Path guiding refers broadly to techniques which use a global knowl-
edge about the scene, more specifically approximation of radiance field in the scene
and/or additional sampling statistics, to efficiently distribute transport paths [VHH+19]
to sample both direct and indirect illumination.

Nevertheless, in this chapter, we aim specifically at sampling only indirect illumina-
tion. Jaroslav’s endeavor in guiding sampling of direct illumination is subject to Chap-
ter 8.
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Figure 3: On-line path guiding progressively learns from previous samples on a scene
rendered by bidirectional path tracing (BDPT). Light transport in this scene is difficult
for sampling because sun light enters the room through a small gap. Path guiding
significantly reduces noise (left) as opposed to traditional BDPT. The path guiding per-
formance depends on the number of samples used for learning the global information
about the transport in the scene as shown in the insets and plots. The illustration is
borrowed from work of [VKŠ+14].

The approximation of radiance field in the scene is learned from previously sampled
paths or in a pre-process step. The paths are samples of an estimator of the measure-
ment equation shown in Sec. 6. The outgoing radiance L from a point x to a direction
ωo is described by the rendering equation

L(x, ωo) = Le(x, ωi) +

∫

S

L(x, ωi)ρs(x, ωo, ωi)dω
⊥

i

︸ ︷︷ ︸

Lr

o

,
(1)

where we integrate product of L and bidirectional scattering distribution function ρs
over a sphere of directions S to compute reflected radiance term Lr

o (we use projected
solid angle measure dω⊥

i
). For simplicity, we now consider only surfaces. The extension

of path guiding to volumes is described in Sec. 7.7.
As we incrementally construct paths vertex by vertex, we bias random decisions

taken in the process to guide the paths towards important regions in the scene. In
these regions, paths are very likely to make significant contributions to the image. We
can bias (i.e. change probability of) multiple decisions along each path, like choosing
direction after each scattering event, free path sampling in volumes, absorption or
choosing a light source for connection. Note, that biasing in this sense does not intro-
duce bias (systematic error) in the image but results in the expected (correct) solution.

7.3 Previous Work

In computer graphics, path guiding was pioneered by works of Jensen [Jen95] and
Lafortune and Willems [LW95]. Both works differ in representation used for the light
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field approximation. While the former used regular histograms in the spherical domain
reconstructed from photons, the latter applied 5D tree to discretize the light field. An-
other crucial difference is the transport direction of samples used for learning as de-
scribed in [VHH+19], Sec. 7.10.

These were followed by works of Hey and Purgathofer [HP02] and Bashford-Rogers
et al. [BRDC12] each using yet another representation namely hemispherical footprints
(i.e.cones with varying radii centered around sample directions) and mixtures of cosine
distributions respectively.

(a) Jensen 8×8 (b) Jensen 32×32

(c) Hey and Purgathofer (d) Our GMM

PDF value:  0    250

Figure 4: Demonstration of the superior flexibility of the parametric Gaussian mixture
model (GMM) over previously used models. Four renderings of a Cornell box scene
with diffuse walls and two glossy blocks lit by the sun are rendered by guided path
tracing using Jensen’s [Jen95] method with the histogram resolution of 8 × 8 (a) and
32 × 32 (b), Hey and Purgathofer’s [HP02] hemispherical footprints (c), and with GMM
(d). The distributions trained at two selected locations in the scene are also visualized.
One distribution contains low-frequency illumination while the other contains a sharp
directional peak caused by a reflection of the sun. The illustration is borrowed from
work of [VKŠ+14].

7.4 On-line Learning of Incident Radiance

To guide paths efficiently in the production scenes we need to deal with high fre-
quencies in the light field which are typically caused by combination of small light
sources, complex geometry with small openings, and also by materials with various
roughness ranging from almost smooth dielectrics and metals to almost diffuse ma-
terials like wood. Previous methods were not able to handle high frequencies and/or
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suffered from high memory footprint that limited achievable precision and thus, in turn,
efficiency of guiding (see Fig. 4).

To remedy this, we formulated guiding as learning uncertainty [VKŠ+14] which is a
central problem of machine learning. Namely, we used Bayessian treatment where
each observed sample is considered as evidence forming our prior believes about
unknown distributions.

As a representation, we chose parametric mixtures of Gaussians representing an-
gular pdfs proportional to incident radiance. For learning, we used combination of
batch and so called stepwise Expectation-Maximization (EM) algorithms. The former
for training initial pdfs if we had sufficient amount of samples which enables faster con-
vergence. The latter allows progressive training from a stream of samples and thus
avoiding problems with limited memory (Fig. 7.2). These mixtures are cached within
the scene in the irradiance-caching-like lazy scheme. If a distribution is not available
within certain distance from valid cache records, we train and insert a new one.

When sampling a new path, we need to sample a direction at every scattering
event (that is interaction with surface or volume). We need to decide whether we
sample according to BSDF or our pdfs proportional to incident radiance. We mix both
using multiple importance sampling (MIS). Note that for Dirac or almost Dirac BSDFs,
samples from our pdf will yield zero (or almost zero) contribution, thus we can keep
sampling only BSDFs not to waste samples. If we need sample from our pdf, given the
position x of the event, we search for the closest distribution in our normal aware the
cache.

This work revealed an interesting result with the respect of chasing the “one” sam-
pling algorithm. We observed that guiding unidirectional path tracing with next event
estimation within complex bidirectional estimators can make many merging and con-
necting sub-techniques almost redundant within MIS estimator. Consequences of this
observation are briefly discussed in Sec. 7.10 and also in the course on path guiding in
production [VHH+19], Sec. 7.9.

For further details, we refer the reader to the work of Vorba et al.[VKŠ+14].

7.5 Optimal Path Lengths: Guided Russian Roulette and Splitting

Path sampling can benefit from directional guiding as long as we can efficiently de-
cide whether it is worth to continue tracing the path or we should rather terminate it
and start tracing a new one from the camera. Traditionally, this decision called Russian
roulette has been driven by albedo of surfaces or volumes.

However, scattering light many times in the scene before reaching the camera2

can result in premature termination of paths that would significantly contribute to the
image otherwise. As a result, their contribution turns into strong noise. This issue arises
also in scenes with fully path-traced sub-surface scattering when path emerges from
the object and is terminated at the next vertex without being able to connect to
a light. On the other hand, albedo driven termination may result into spending too
much time on tracing reflections between materials with high albedo (white walls,
snow, blond hair, white fur, etc.) without actually finding a light source and scoring a
contribution.

To remedy this, we introduced guided Russian roulette and splitting (also known as
adjoint-driven Russian roulette and splitting) [VK16] which allows to optimize path ter-
mination by using global knowledge about the scene learned from previous samples

2Probability of surviving the whole paths is multiplication of survival probabilities at each vertex and
thus it typically drops very fast with the path length.
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Figure 5: In scenes where light is scattered many times before reaching the camera,
good importance sampling and thus noise reduction can be achieved by guided
(adjoint-driven) Russian roulette and splitting (ADRRS). Using traditional albedo-driven
Russian roulette in path tracing is sub-optimal under these conditions (left) because
paths are either terminated too soon or time is wasted on sampling overly long paths.
Using global knowledge about the scene clearly reduces noise in indirectly lit regions
(middle). Directional path guiding can be naturally combined with ADRRS which re-
sults in synergic noise reduction (right). Image courtesy of [VK16].

ADRRS
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≡
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Figure 6: After we account for a particle’s contribution from a collision at y, we apply
our adjoint-driven Russian roulette and splitting (ADRRS) aka GRRS to decide about
the particle’s termination/splitting. All potentially spawned particles at y have weight
ν̂(y, ωi) and are scattered and traced independently.

(see Fig. 7.5). Moreover, path guiding can use this knowledge to split the path in impor-
tant regions which are, in turn, covered by more samples. Increased efficiency follows
from the fact that path splitting amortizes the work spent on tracing the whole path up
to the splitting point.

The more scattering events along the path the greater benefit the guided Russian
roulette and splitting provides. This is a reason why it is so important for efficient volu-
metric transport where average path length is usually high. In Sec. 7.7, we describe
this volumetric extension in more detail.

Termination and Splitting Rate. To determine survival probability/splitting rate

q(y, ωi) =
E[c(y, ωi)]

I
=

νi(y, ωi)L
r
o(y, ωi)

I
, (2)

guided Russian roulette and splitting (GRRS) compares expected contribution E[c(y, ωi)]
of a current path at vertex y coming from direction ωi to the computed pixel value I
(Fig. 6). The path contribution c(y, ωi) is a random variable associated with a path that
has reached the point y from the direction ωi and has the weight νi(y, ωi). The variable
is distributed over all possible realizations of the path beyond y, as shown in Fig. 7. For
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example in path tracing, the outcome of c for one such specific realization is given
by the path’s contribution to the sum in the measurement estimator of Eq. (??). Note

c(y, ωi)

yωi

transport

direction

Figure 7: Realizations of the path contribution variable c(y, ωi) correspond to the differ-
ent possible particle paths beyond y.

that each particle sampled beyond y is an unbiased estimate of reflected radiance
Lr
o(y, ωi) which is defined by Eq. (1). Thus the expected contribution E[c(y, ωi)] is given

by the product of the path weight νi and the outgoing reflected radiance Lr
o.

In practice, if we expect that the path could make the same or higher contribution
compared to the current pixel value, we always keep tracing further. On the other
hand, relatively low expectation results into high chance that the path will terminate.
If q is higher than 1, we split the path into q independently traced paths.

To deal with non-integer values of q, we can either (1) take a ceiling of q and split
into n = ⌈q⌉ path or (2) use an expected-value split when we split into n = ⌊q⌋ new
particles with a probability n + 1 − q or into n + 1 particles otherwise. In the latter, the
new value of each split path is equal νi/q where νi is the MC value of path when it
arrived at y. Originally, we implemented the expected-value split [VK16], however,
this approach needs a random number and is likely to introduce some variance. We
haven’t experimented with both approaches to compare them thoroughly because
we supposed that the differences would be marginal overall.

Practical Consideration. Guided Russian roulette and splitting (GRRS) requires two
kinds of estimate to work: (a) an estimate of the computed pixel value I and (b) esti-
mates of incoming radiance at each scattering event (i.e. path vertex) along the sam-
pled path. Essentially, these two quantities are compared at every scattering event to
decide whether the path will be terminated, split, or will continue. It seems prohibitive
that these quantities are not known up front, however, this technique can work with
relatively crude estimates.

There are many options for computing the pixel estimates I. Originally, we used a
pre-computation step to cache estimates of incident radiance in the scene and de-
termined the pixel estimates I in a gathering step [VK16]. However, this extends the
time to first pixel and thus is not suitable for progressive rendering which immediately
provides a preview of the computed image. As discussed in the course on path guid-
ing in production [VK16], Sec. 7.10, the forward learning guiding methods [MGN17,
SJHD18] are inherently progressive because they learn while the image is computed.
To avoid increasing the time to first pixel due to GRRS in guiding methods without pre-
computation, we use filtered current pixel estimates I which are updated on-line as
the light transport simulation proceeds. Our filtering, which provides low-variance esti-
mates, is implemented as a hierarchical sub-sampling of the image and the estimates
are refined up to a pixel level as more paths are traced [VK16], Sec. 7.7.

Obviously one can use even more advanced de-noising methods and consider
GPU support if this is available. It is only important to achieve the pixel estimates fast
without claiming too much of computational resources needed for the rest of the light
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Vorba et al. Ours ReferenceVorba et al. (MSE: 0.026) Ours (MSE: 0.013)

Figure 8: In scenes with glossy surfaces, product importance sampling [HEV+16] (right)
yields higher sample quality (512 samples) over pure radiance based path guid-
ing [VKŠ+14] (left).

transport simulation. An important insight is, that pixel estimates I do not need to be
absolutely precise, yet GRRS can provide significant time savings.

As we mentioned above, we also need to have estimates of incident radiance at
every point in the scene. While these can also be only approximations of true values,
practical implementation should consider to start using GRRS only when the estimates
are based on sufficient number of samples and have variance below a reasonable
threshold [VK16].

Importance Sampling and Zero-Variance. I this work, we also study relation of ADRRS
to zero-variance sampling pdf and show, that it effectively works as rejection sam-
pling/splitting that reacts at each vertex locally on previously sampled decisions [VK16],
Sec. 7. In other words, it implicitly considers the true zero-variance pdf (given our ap-
proximations are perfect) and compares it to the current sampling pdf. The termina-
tion/splitting rate q is determined so that it compensates for differences in respective
pdfs.

7.6 Glossy BSDFs: Product Sampling

Traditionally, practical simulators have used only local importance sampling techniques
like for example BSDF sampling, which is often sub-optimal. Path guiding [VKŠ+14] [VK16]
described so far is based on sampling proportionally to incident illumination and BSDFs
separately while mixing two sets of samples by MIS. This approach importance sample
only parts of the integrand in reflected radiance Lr

o (Eq. (1)) and thus is sub-optimal
for non-diffuse materials. We explored importance sampling of the full product in the
work of Herholz et al.[HEV+16].

Mixtures of Gaussian distributions used to represent incident illumination [VKŠ+14]
allow analytical calculation of their product. To utilize this fact, we have to fit Gaus-
sian mixtures (GMM) to BSDFs in our scene. Subsequently, when we need to sample
a direction ω at the scattering event x, we look-up GMM distribution of incident illu-
mination at that position and also a GMM fit to BSDFs at given position. These fits are
pre-calculated for all BSDFs in the scene and stored in a cache for discretized view
directions. Next a we calculate the product and sample the direction ω from resulting
GMM.

Since now our product distribution is also aware of BSDFs, it is worth noting, that now
we can safely take 90% of all samples from this product and only 10% from BSDF for MIS
combination. Note that before we had to stay rather conservative and took 50% from
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incident illumination distribution and 50% from BSDF [VKŠ+14]. This further increases
efficiency of path guiding.

7.7 Path Guiding in Volumes

Our guided samplingStandard sampling  relMSE: 0.376 relMSE: 0.009(S+V) (S+V)(V) (V)

Figure 9: Path guiding in volumes [HZE+19a] importance sample all integrated terms
based on zero-variance random walk theory. This provides superior sample quality
over standard importance sampling of only transmittance and phase function. Images
show a scene with optically dense medium rendered for 30 minutes where (V) is only
volumetric transport and (S+V) is also with surfaces.

Jaroslav Ǩrivánek also supervised extension of path guiding and adjoint-driven Rus-
sian roulette and splitting into participating media [HZE+19b]. This work stresses the
importance of guiding multiple decisions along the path based on the zero-variance
theory applied to participating media. Such importance sampling of all terms of volu-
metric rendering equation is efficient even for honestly traced sub-surface scattering 9.

To this end, they apply mixtures of von Mises-Fisher distributions (vMFM) to rep-
resent incident and in-scattered radiance learned in a similar process to Vorba et
al. [VKŠ+14]. Von Mises-Fisher distribution is isotropic and mathematically very similar
to Gaussian distribution but it is conveniently defined over sphere of directions. These
properties allow analytic calculation of a product and convolution of a phase func-
tion and learned incident radiance cached within the scene which is essential for the
efficient volume guiding. Note, that in practice, this requires fitting of phase functions
by vMFM which can be pre-calculated.

7.8 Variance-Aware Path Guiding

Instead of pursuing pure zero-variance path guiding, that is learning pdfs proportional
to radiance or its product with BSDFs, Rath et al. [RGH+20] explores learning of theoret-
ically optimal densities that account for variance in nested estimators. This compen-
sates for the fact that, in practice, we never arrive at the exact zero-variance pdfs due
to used approximations or low numbers of observed samples or simply due to omitting
some terms from importance sampling (e.g. when not using product sampling).

7.9 Subsequent Research

Jaroslav has supervised several papers on path guiding and his work has inspired others
to further explore this avenue.
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Müller et al. [MGN17] proposed using SD-trees to represent directional pdfs instead
of parametric mixtures and also came up with an efficient lock-less caching scheme.
They recently proposed several improvements [VHH+19], Sec. 10, including spatial and
directional filtering of learned samples as well as optimized allocation of samples be-
tween BSDF/incident radiance sampling. Diolatzis et al. [DGJ+20] extends SD-trees by
product sampling using linearly transformed cosines. This approach has been also ex-
tended to participating media [DWWH20].

Just recently, Ruppert et al. [RHL20] have reported significant improvements with
parametric mixtures (namely with vMFM) thanks to optimized and improved learning
algorithms and to exploiting advantage of parametric properties of vMFM enabling so
called parallax-aware warping. Further, akin to Müller et al. [MGN17], they enable for-

ward learning, that is learning from sampled camera paths rather than from photons,
which makes it more practical for production [VHH+19]. They even reported interest-
ing improvements in quality on the whole range of scenes comparing their work to the
SD-tree based approach.

Dahm and Keller [DK18] formulated path guiding as Q-learning rather than by
means of zero-variance theory. Such reinforcement learning enables using cached
approximations instead of contributions of full paths which increases the number of
non-zero samples. This, in turn, improves learning at early stages. Pantaleoni [Pan20]
proposed using GMMs in the context of Q-learning and path space filtering [KDB14,
BFK18] while targeting real-time setting.

While so far described path guiding methods can be considered local, i.e. paths
are guided by a chain of local decisions using marginalized pdfs at every vertex, Simon
et al. [SJHD18] explored guiding with complete light transport paths. They retain a
set of outlier guide paths for guiding subsequently sampled paths which includes all
aspects of high-dimensional path space as opposed to local methods. This comes
with both advantages and drawbacks [VHH+19], Sec. 12.

Path guiding has been explored even within the context of deep learning which en-
ables harnessing dedicated GPU hardware [MMR+19]. Recent works also explored the
idea of using control variates next to path guiding in various contexts [Pan20, MRNK20].

7.10 Industry Impact

Path guiding has been implemented in production renders of several VFX studios.
Namely at Weta Digital’s Manuka and also Hyperion, the renderer used at Walt Dis-
ney Animation Studios [VHH+19]. In Manuka, early implementation of path guiding
has been available since 2014 and has been maintained and developed up until now.
From production point of view, path guiding is relatively appealing since it minimizes
the need of complex and rather cumbersome3 bidirectional estimators [VHH+19], Sec. 7.9.
Also it can greatly reduce rendering times in many scenarios.

7.11 Future Works

Some opened problems of path guiding were listed in the course on production path
guiding [VHH+19]. It is worth noting, that some of them, like faster learning, parallax-
problems, or second moment guiding, has already been addressed in recent works [RGH+20,
RHL20]. From practical point of view, it makes sense to further pursue the goal of seam-
less guiding implementation that would smoothly fit into ecosystem of path sampling

3It is not easy to maintain while adding new features into the renderer. Some production features that
make for examples materials depend on the eye-path prefix are rather challenging to implement within
bidirectional context.
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techniques used in a production system [FHH+19] without potential risk of excessive
overhead in simple scenes.

7.12 Conclusion

Jaroslav has left clearly visible footprint in the field of light transport simulation. Whichever
direction the future research will go, it is certain that Jaroslav will be greatly missed on
this path towards the “one” sampling light transport algorithm.
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8 Direct Lighting
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Direct Lighting

ADVANCES IN MONTE CARLO RENDERING:  THE 
LEGACY OF JAROSLAV KŘIVÁNEK

• Direct and indirect illumination calculations are two important components of any 

physically-based renderer. While the indirect component has been traditionally 

considered a more complex problem and has been studied in many research 

works, Jaroslav acknowledged that improving the efficiency of direct illumination 

could have a substantial impact on the overall rendering performance, especially 

with complex visibility and in the presence of large numbers of light sources. 

• In this part, we will cover direct illumination sampling based on online learning of 

light selection probability distributions. We will show how to formulate the 

learning process as Bayesian regression to prevent over-fitting and ensure 

robustness even in the early stages of computation.



2

BEYOND DIRECT ILLUMINATION

• Any guiding needs radiance approximations

• How to learn them reliably?

• Jaroslav’s proposition: 
(Online, Bayesian) Machine learning

[Vorba et al. 2014, Vévoda et al. 2018]

ADVANCES IN MONTE CARLO RENDERING:  THE LEGACY OF JAROSLAV KŘIVÁN EK

• However, we would like to go beyond the specific problem of direct illumination 

and really focus on the fundamental methodology we used to address this 

problem, since it is applicable in a wider context in guiding and adaptive sampling.

• As we have seen in the previous part of this course, any guided sampling requires 

some information about the radiance distribution in the scene. The radiance is not 

available upfront, so we must resort to approximations. The approximations can be 

obtained by learning from the Monte Carlo samples themselves – but these 

provide noisy and unreliable estimates, especially early in the computation. So the 

general question we are striving to address is how to obtain reliable information 

from unreliable, noisy samples.

• Jaroslav’s proposition was that machine learning, and specifically Bayesian 
statistics, provides some excellent tools to tackle exactly this problem. This was 

the underlying idea in two guiding works Jaroslav supervised: the direction guiding 

[Vorba et al. 2014] mentioned earlier in this course, and the direct illumination 

guiding [Vévoda et al. 2018] that we will present now.
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Bayesian online regression for adaptive 

direct illumination sampling

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek

Chaos Czech, a.s.
Charles University, Prague

• This method was first presented at Siggraph 2018 under the name Bayesian 

online regression for adaptive direct illumination sampling.

• It was a result of collaboration with Chaos Czech, the developer of Corona 

Renderer, and became the default solution for direct illumination calculation in 

Corona Renderer version 3.
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MOTIVATION
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• Let us first motivate this work.
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5
Direct + indirect illumination

• Monte Carlo rendering algorithms are currently getting more and more popular, 

but they suffer from noise. 

• This image shows an example of a scene rendered using Monte Carlo. During 

rendering the noise shown on the left slowly goes away until the noise-free image 

shown on the right is obtained. Generally, it can take up to several hours for the 

noise to disappear.

• Illumination of any point in a scene can be split into two components:

• Direct = illumination coming directly from light sources

• Indirect = illumination coming from light sources after at least one 

interaction with the scene, e.g. after reflection from a different part of the 

scene

• Traditionally, the indirect component has been considered as the main source of 

noise, and it has been subject to lot of research. But in this scene, as well as many

other production scenes, it is the direct component which causes the trouble.
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Direct illumination only

Non-adaptive sampling
[Wang and Akerlund 2009]

• We can clearly see the problem in this image showing direct illumination only.

• An example of a non-adaptive direct illumination sampling method is shown on 

the left. It samples lights proportionally to a conservative estimate of their 

unconcluded contribution. It struggles to work efficiently in this scene, because it 

wastes a lot of samples on the strong but almost completely occluded sun 

(sunlight enters the scene only through narrow gaps between the curtains). 
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Adaptive sampling

[Donikian et al. 2006]

Direct illumination only

Direct illumination only

Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang and Akerlund 2009]

• One possible solution is to use previous adaptive methods which try to improve 

sampling based on past samples. An example is shown on the right. 

• However, while they can decrease the amount of noise significantly, they can also 

introduce various artifacts and spiky noise because they are based on adhoc

solutions and they tend to overfit to the input noisy data.

• This lack of robustness is a consequence of adhoc solutions to crucial questions in 

adaptive sampling: 

• When is it safe to rely on the noisy samples?

• How should the noisy samples be combined with any previous, a priori 

knowledge?
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Adaptive sampling
[Donikian et al. 2006]

Direct illumination only

510x faster

Robust

Ours

(Bayesian learning)

Non-adaptive sampling
[Wang and Akerlund 2009]

• In 2018 we proposed a solid theoretical framework based on Bayesian learning 

that addressed the above questions, and thanks to that enabled robust adaptive 

sampling in rendering.

• In this scene, our solution is more than 500 times faster than the non-adaptive 

solution and we can achieve much better robustness than the previous adaptive 

sampling method by Donikian et al. [2006].

• Moreover, the Bayesian framework we present here is not limited to adaptive 

direct illumination. Other guiding / adaptive sampling methods can benefit from it 

as well.
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PREVIOUS WORK
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• In the context of Monte Carlo simulation there is a lot of work related to ours.
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ADAPTIVE SAMPLING

• General Monte Carlo

– Vegas algorithm 

• [Lepage 1980]

– Population MC

• [Cappé et al. 2004, ...]
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• Adaptivity in Monte Carlo simulation is not a new concept.

• A classic adaptive algorithm for general Monte Carlo estimation is the Vegas 

algorithm by Lepage [1980], which works by histogramming (stratifying) the 

integrand and using these histograms for better sampling in subsequent steps.

• Another example is Population Monte Carlo [Cappé et al. 2004], which uses a 

population of simulation particles and tracks how well they sample the integrand. 

Based on that, they keep the best individuals for subsequent sampling rounds.
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ADAPTIVE SAMPLING

• Rendering

– Image sampling

• [Mitchell 1987, ...]

– Indirect illumination  (path guiding)

• [Dutré and Willems 1995, Jensen 1995,  Lafortune et al. 1995, ...]

• [Vorba et al. 2014, Muller et al. 2017]

– Direct illumination

• [Shirley et al. 1996, Donikian et al. 2006, Wang and Akerlund 2009]
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• A lot of adaptive sampling work exists in rendering. 

• Of the many works, we mention Mitchell [1987] which deals with allocation of 

samples into image parts with high-frequency content. 

• In adaptive indirect illumination computation, some of the early works were done 

by Dutré and Willems [1995], where the authors adaptively traced particles from 

lights; Jensen [1995] who used photon maps to construct path sampling 

distributions (this is probably the first work in graphics on direction guiding); and 

Lafortune et al. [1995] who applied a Vegas-like approach in Monte Carlo light 

transport simulation.

• The ongoing renewed interest in path guiding / adaptive path space sampling 

could be attributed to work of Vorba et al. [2014] previously described in this 

course. The direction sampling algorithm by Muller et al. [2017] is a version of the 

Vegas-style algorithm by Lafortune from 1995.

• As for direct illumination, we mention the pioneering work by Shirley et al. [1996] 

who adaptively classified lights into important and unimportant ones. 

• The most closely related is the work by Donikian et al. [2006] that we describe in 

more detail later. 

• Wang et al. [2009] sample lights adaptively based on surface reflectance and 

estimates of lights' contributions.

• None of these works deal with a problem of determining when and how to 

incorporate all the information into a robust, reliable ‘trained’ sampling 
distributions.
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BAYESIAN METHODS IN RENDERING

• Filtering

– NonLocal Bayes

• [Boughida and Boubekeur 2017]

• Global illumination

– Bayesian Monte Carlo 

• [Brouilat et al. 2009, Marques et al. 2013]

– Path guiding 

• [Vorba et al. 2014]
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• On the other hand, Bayesian methodology has so far not been widely applied in 

rendering.

• This list mentions the few Bayesian methods in image filtering and global 

illumination.
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• Now we give you some background related to the direct illumination problem.
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DIRECT ILLUMINATION SAMPLING

• Consider a scene with several light sources (orange stars) and geometry (blue 

block). The goal is to calculate the direct contribution of all lights towards a given 

point in the scene (black point). 

• In Monte Carlo rendering this is achieved by randomly sampling points on the 

surface of all lights and accumulating contributions from these samples (orange 

arrows). Efficiency of this approach depends mainly on the probability distribution 

used for drawing the samples: the closer the distribution matches the actual 

contribution from points on lights, the less noise in the resulting image.

• Direct illumination sampling and the corresponding distribution can be broken 

down to two stages: 

• A) pick a light at random according to a discrete distribution over lights

• B) randomly sample a position on the chosen light according to a 

continuous distribution over the light surface

• While much previous work has addressed optimal choices in step B, we focus 

solely on step A: finding the best discrete distribution over lights (orange bars). 

That is a complex task mainly for two reasons.
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2. Occlusion
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PROBLEMS

• First, there is a problem with light count. As a construction of the sampling 

distribution scales linearly with the number of lights (for each light the probability 

has to computed, the sampling distribution has to be constructed, turned to a 

cumulative distribution to facilitate the sampling, and properly normalized), it 

becomes computationally expensive in scenes with many light sources. This can 

pose a significant limitation as even thousands of lights are sometimes used in 

practice (for example in a city at night).

• Second problem is the highly uneven light contributions which are difficult to 

predict. In particular, occlusion of a light because of other scene geometry is 

usually not known in advance and can have substantial impact on the light 

contribution and thus on the sampling distribution we strive to find.
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1. MANY LIGHTS → CLUSTERING

• In order to improve scalability of our method we incorporate clustering of lights 

using the Lightcuts method [Walter et al. 2005]. Before the rendering starts, we 

pre-cluster all lights. Then during rendering, we always choose clustering (green 

ellipses) according to conservative contribution bounds (green arrows) such that 

all lights in a cluster have similar (approximated, unoccluded) contribution to a 

given scene point.

• Similarly to work of Wang and Akerlund [2009] we then sample the clusters, i.e. 

instead of a discrete distribution over all lights we now seek the best discrete 

distribution over clusters (green bars). Lights within a cluster are then picked 

randomly based on their flux. 

• This way we can greatly reduce the size of the constructed distribution, we can 

even limit its maximum size without omitting any light simply by making the 

clusters larger. While it does not solve the second problem (occlusion), without the 

clustering it would be pointless to even look for a solution as any non-trivial 

construction of the sampling distribution would become computationally 

infeasible in presence of many lights.
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2. OCCLUSION → ADAPTIVITY

• Complex visibility in a scene can cause many light clusters to be fully or partially 

occluded. This is usually very hard to find out in advance, before samples are 

drawn. Instead, we can first draw the samples and adapt the sampling distribution 

afterwards. This is typically an iterative process. We start with some initial 

distribution and draw first samples (orange arrows). We compute their 

contributions (orange points) and recompute the sampling distribution accordingly. 

We then use this updated distribution for drawing next samples and repeat the 

process. This is the basic idea behind all adaptive methods.

• However, there is an open question – how exactly should be the sampling 

distribution computed based on the samples? The problem is that Monte Carlo 

samples are noisy, they provide the correct answer only after averaging many of 

them. Therefore, it is not safe to rely on them in early stages of rendering. Doing 

so may result in image artefacts.

• For example, one way of adapting the distribution is proposed by Donikian et al. 

[2006]. They gather statistics from samples about true cluster contributions in 

screen space for each pixel. But the per-pixel statistics are too noisy, so they 

additionally gather average statistics over entire blocks of pixels. Then they mix 

both the per-pixel and per-block statistics to obtain the final sampling 

distributions: early on, the blocks are given more weight and as more samples 

arrive, the per-pixel statistics are given more weight. But the mixing is done in an 

ad-hoc way, which often results in overfitting of the sampling distribution to the 

samples, and consequently produces image artifacts.
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ADAPTIVITY WITH PRIOR

• An important part of an adaptive solution is incorporation of prior knowledge 

which expresses our initial belief about the sampling distribution. It serves as a 

staring point which gets updated as more Monte Carlo samples are gathered. 

However, how exactly should be the prior knowledge combined with samples is 

another open question.

• For example, Donikian et al. assume that all clusters are initially equally probable. 

Therefore, they additionally mix their distribution from per-pixel and per-block 

statistics with a uniform distribution in an ad-hoc way.

• In our case, we take advantage of the cluster contribution bounds provided by the 

clustering and use them as the prior knowledge. We seek a principled way how to 

combine them with the Monte Carlo samples.
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PROBLEM SUMMARY

• Let us now summarize the problem at hand.

• Our goal is to compute direct illumination by means of Monte Carlo sampling, and 

for that we need to find optimal discrete sampling distribution over clusters.

• We choose to use adaptive sampling so that we can deal with (partial) light 

occlusion, but we strive for a robust, 100% reliable solution, even in complex edge 

cases.

• We have two kinds of information at our disposal:

• First, the bounds of cluster contribution towards a point, which are 

conservative and noise-free. These can be computed on the fly, so they are 

available for the start. As such, they can serve as our prior belief about the 

clusters’ real contribution to any given scene point. 
• Second, the Monte Carlo samples of direct illumination (i.e. clusters’ real 

contribution). These are noisy at the start, but as more samples are taken, 

their average eventually converges to the correct answer - over time, they 

become more accurate than the conservative bounds.

• We propose a well-founded approach to combining these two sources of 

information in a robust way based on Bayesian inference, as we explain shortly.
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• Let us now introduce our approach.

20



21

• Optimal sampling distribution

• Adaptive sampling by Bayesian inference

∝ mean2 + variance?
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CONTRIBUTIONS

• We make two main contributions:

• First, we show what should be the optimal discrete probability distribution 

for choosing the cluster, given the statistics of cluster contributions.

• Our second and main contribution is the use of Bayesian inference to learn 

these sampling distributions. This gives us a robust solution and allows us 

to combine Monte Carlo samples with cluster contribution bounds in a 

principled manner.

• We start with the first point.
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OPTIMAL SAMPLING DISTRIBUTION

• What is the discrete probability distribution for choosing a cluster at random that 

provides the lowest possible variance?

• The usual approach in Monte Carlo sampling would be to make the clusters’ 
sampling probabilities proportional to their mean contribution to a given point. We 

showed in the paper that this traditional choice may in fact be far from optimal, 

and we derived the optimal solution.

• It is important to realize that once we pick a cluster, another random decision 

follows, which selects a particular light and a sample location on the light. The 

contributions from these sample locations will generally vary: usually the larger 

the cluster and/or the sharper the surface BRDF, the more variance in the 

individual sample contributions. Since this variance eventually creeps into the 

overall direct illumination estimator over all clusters, we need to reduce it - by 

allocating more samples to those clusters that yields highly varying contributions.

• The final optimal sampling should therefore take into account both the mean 

contribution but also the variance of the contributions for each cluster. The specific 

formula is given on the slide. 

• The figure on the left shows an example of three clusters and their samples 

(orange arrows). Contribution of these samples is plotted in the middle figure 

(orange points) together with their mean (red thick line) and variance (blue 

interval). The usual sampling distribution (red bars) and the optimal one (blue 

bars) are shown on the right. Note that the second cluster gets much higher 

probability when its high variance is taken into account.
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Direct illumination only

• Let us show you the practical example: this scene contains more than 5000 light 

sources so the clusters can be large and complicated.
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Mean only (Previous)

Direct illumination only

Mean + Variance (Ours)

• On the left we can see an inset showing how sampling according to a mean only 

performs. It undersamples some tricky cluster which leads to spiky noise. And on 

the right we can see that sampling according to both the mean and the variance 

eliminates this issue.
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• Optimal sampling distribution

• Adaptive sampling by Bayesian inference

∝ mean2 + variance
mean, variance

?
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CONTRIBUTIONS

• Having explained the target optimal sampling distribution that we strive to 

achieve, we now show how to learn this desired distribution using Bayesian 

regression. The issue is that the mean and the variance needed for the optimal 

sampling are not known upfront and need to be learned during rendering.
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NAIVE ADAPTIVE CLUSTER SAMPLING

• To motivate our approach, let us first show how a naive adaptive approach would 

behave.

• Suppose we have already taken some samples from clusters and obtained some 

cluster sampling distribution. Now suppose we have taken a direct illumination 

sample which happens to be an outlier. For instance, the sample may lie on a light 

extremely close to the illuminated point.

• Samples and probabilities for situation before and after the new sample are shown 

side by side in the same figures, the situation before uses less saturated colours.

• If we estimated the sample means (red thick lines) directly (i.e. as an average), the 

estimates would change abruptly due to the outlier sample. That would have a 

disproportionately strong effect on further cluster sampling: one cluster would get 

sampled very often at the expense of other clusters, leading to increased image 

noise or even strong fireflies.
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BAYESIAN ADAPTIVE CLUSTER SAMPLING

• We propose to estimate the means (and variances) in a Bayesian manner: We 

model the distributions of Monte Carlo samples seen so far, while we also have 

some prior information about parameters of that distribution.

• As a result, when we get a new – possibly outlier – sample, our distribution is 

affected less abruptly and so do the cluster sampling probabilities derived from it.

• Resiliency to outlier samples without compromising the ability to learn from the 

new samples is the basis of our robust solution.
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Posterior(𝜃) ∝ ෑ𝑥∈DataModel 𝑥|𝜃 × Prior(𝜃)
𝜃MAX = argmax(Posterior(𝜃))
E Model 𝑥|𝜃MAX , Var Model 𝑥|𝜃MAX

2. Express posterior probability of model parameters 𝜃:

3. Find model parameters 𝜃MAX that maximize posterior:

4. Compute mean and variance of the model with 𝜃MAX:

1. Define data, their model with parameters 𝜃 and prior for 𝜃
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THE BAYESIAN WAY

• So how do we estimate the mean and variance of the samples the Bayesian way?

1. We first define what exactly our data are and how we gather them. Based on their 

shape we derive a parametric model – an analytic probability distribution that 

approximates the true unknown distribution of the data. Mean and variance of 

this model is what we are looking for. However, the model depends on a set of 

parameters θ whose values are not known in advance. Therefore, we define a 

prior distribution over θ that express our initial belief about their values, and we 

seek such values that would best explain the observed data given the prior.

2. In order to find such values we need to express the posterior distribution –
probability of θ values after observing the data. It is given by the well-known 

Bayesian formula: posterior ∝ likelihood × prior, where likelihood expresses a 

probability of observing the data, i.e. it is a product of the model over all data.

3. We then maximize posterior w.r.t. θ which gives us the most probable θ values 

given the prior and the observed data. This is a so-called maximum a posteriori 

estimate. The direct mean estimation we showed earlier in the naive adaptive 

sampling corresponds to omitting the prior and maximizing directly the likelihood. 

This so-called maximum likelihood estimate is known to be prone to overfitting. 

More information on Bayesian treatment can be found in [Bishop 2006].

4. Finally, we plug the obtained θ into the model and compute its mean and 

variance which we were looking for.

• Having described our entire Bayesian framework we now return to the first point 

and define the three key components: data, model and prior.
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SETUP

• We start by explaining our basic setup. 

• We split the scene into fixed spatial regions and for each region we compute 

exactly one light clustering. Our method then operates independently on each 

cluster-region pair.

• Technical details:

• Light clustering is computed on demand when a respective region is 

queried for the first time and is kept cached in that region for further use.

• A regular grid is used for splitting the scene. However, as we discuss in 

results, the method is not sensitive to size of the regions, so any space 

subdivision could be used.
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DATA

• Let’s now focus on one cluster-region pair data, i.e. on samples collected from one 

cluster in a single scene region (an example shown on the left).

• For each sample we keep track of its contribution (i.e. MC direct illumination 

estimate) and the distance d in the geometry factor.

• If we plot the gathered data w.r.t. to the distance, the plot (shown in the middle) 

reveals the nature of the relation of illumination estimates to the distance. One 

may observe the inverse-squared falloff with the distance (red dashed line) , and a 

number of zero-valued (occluded) samples (yellow points at the bottom of the 

plot).

• In order to model these data, we take a closer look on how the data are 

distributed for a particular distance. From a histogram (shown on the right) we can 

see that the non-zero data follow a curve similar to a Gaussian and the rest forms a 

sharp peak at zero. This suggests how the data could be modeled.
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MODEL

• Our model (in grey) is therefore a parametric regression model, which - for a given 

distance d - yields a distribution of direct illumination sample values. We design 

our data model as follows:

• Non-zero samples are modeled by a normal distribution (i.e. a Gaussian) 

with mean and variance being a function of the distance associated with 

the samples. This part of the model has two parameters, k and h.

• The zero valued samples are incorporated by mixing the inverse-squared-

distance falloff model with a delta function, and it is controlled by the 

parameter p0, which has the meaning of occlusion probability.

• Having designed our data model, we proceed to define the prior distribution for all 

three model parameters, k, h, and p0.
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Conjugate prior distributions for model parameters 𝜃:p0 ~ Beta 𝑝0 …k, h ~ Normal inverse gamma 𝑘, ℎ 𝜇0, … )hyperparameters

cluster contribution bound 
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PRIOR

• The model we have just defined has parameters k, h and p0. In the Bayesian 

treatment, these are viewed as random variables governed by a certain probability 

distribution.

• The “prior” is a specific probability distribution that we believe these parameters 
follow, without observing any data at all.

• A “conjugate prior” is a convenience construction: we choose the prior to have a 
functional form that will be preserved when multiplied by the likelihood of 

observed data.

• We showed in the paper that the conjugate prior in our case takes form of the Beta 

distribution for p0 and the normal-inverse-gamma distribution for the parameters k

and h.

• There are various hyperparameters in the equations, but one parameter which 

stands out is μ0, for which we use the conservative cluster contribution bound. 

This hyperparameter expresses our a priori belief about the mean of our data: That 

is, the cluster contribution bounds provide a prior information about the expected 

contribution each cluster will make to each scene region. This belief is then 

continually refined as we observe the actual direct illumination contributions 

made by sampling the clusters.
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• During each direct illumination estimation

– Obtain clustering for the current region

– For each cluster in the clustering estimate mean and variance the 

Bayesian way (using statistics of all previous cluster-region samples)

– Build sampling distribution over clusters (prop. to mean2 + variance )

– Draw a new sample (i.e. choose a cluster from the distribution, then a 

light in the cluster, then a point on the light)

– Update the cluster-region statistics with the new sample

ALGORITHMIC SUMMARY
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• To wrap it up, our algorithm is as described on the slide.
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• We now demonstrate our solution in practice.
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35

TESTS

• Performance

• Grid resolution

Direct only Direct + indirect

Simple occlusion

Complex occlusion
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• This is a list of all comparisons we will present. We will start with performance 

testing in a scene with simple occlusion in direct illumination only setting. 
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36
Direct illumination only

• This is the living room scene from the beginning of our presentation. It is lit mostly 

by a few small area lights on the ceiling, only in the left part sunlight can enter the 

room through the windows.

36



37

Wang Ours Donikian

510x faster Robust

Direct illumination only

R
M

S
E

time [min]

Wang

• As you could already see, the non-adaptive sampling of Wang and Akerlund [2009] 

does not perform well in this scene. Why is that? The sun is much stronger than 

the ceiling lights and is therefore sampled much more often even though it is 

actually occluded - and so most of the samples are wasted.

• Donikan et al.’s algorithm [2006] improves the result significantly, as it quickly 
learns the sun occlusion. On the other hand, it struggles with the ceiling lights. 

They are covered by shades which block some of the samples. The method 

believes these lights are actually completely occluded, and consequently 

undersamples these lights and introduces spiky noise.

• Our method can also quickly learn the sun occlusion and converges more than 

500× faster than the non-adaptive method of Wang and Akerlund. Interestingly, in 

the RMSE plot we can even observe a higher empirical convergence rate. At the 

same time, thanks to the Bayesian treatment, our method is robust, does not get 

confused by the occluded samples and avoids the spiky noise.
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TESTS

• Performance

• Grid resolution

Direct only Direct + indirect

Simple occlusion

Complex occlusion

✓
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• So, that was the direct illumination. However, in practice one is usually more 

interested in images containing both direct and indirect components.
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Direct + indirect illumination

• This is the same scene but with the indirect component included.
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Direct + indirect illumination

Wang

Ours

6.7x faster 6.7x faster

Wang

Ours

• We can see that the strong direct illumination noise of Wang and Akerlund

dominates also in the complete image. The direct component is definitely the main 

source of noise in this scene.

• By using our method in the next event estimation in path tracing, we are able to

improve the light sampling on every path vertex and get more than 6x overall 

speedup.

• Note that the remaining noise at the bottom right of the image is caused solely by 

the indirect component and cannot be remedied by our method.
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TESTS

• Performance

• Grid resolution

Direct only Direct + indirect

Simple occlusion

Complex occlusion

✓ ✓
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• Now we stress-test robustness of our method in a scene with complex occlusion.
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Direct illumination only

• This scene presents a real challenge due to its highly structured illumination plus 

there are lights in the other room behind the door.
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Direct illumination only

Ours DonikianWang

9.3x faster

R
M

S
E

time [min]

Wang

• In this part the method of Wang and Akerlund produces a lot of noise again, as it 

wastes samples on the lights behind the door.

• On the other hand, our method performs well. It is more than 9 times faster, and 

again we can observe higher empirical convergence rate. And all that without 

introducing any artifacts in such a complicated illumination setting.

• Donikian et al.’s method at first also seems to perform well but further inspection 
would discover small blocky artifacts in the shadows.
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Ours DonikianWang

Direct illumination only

Robust

• In this inset, the non-adaptive sampling of Wang and Akerlund again does not 

perform well.

• But this time also the Donikian et al.’s method fails badly:  The illumination coming 
through the plant leaves is too complex for the ad-hoc learning to handle it well, 

the method overfits and produces square-shaped artifacts. 

• This is exactly the problem of essentially all previous adaptive methods: While they 

can sometime provide substantial speedup, they do not fail gracefully, and one 

cannot rely on them.

• Our Bayesian learning makes our method much more robust and artifact-free.
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TESTS

• Performance

• Grid resolution

Direct only Direct + indirect

Simple occlusion

Complex occlusion

✓ ✓
✓
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• Finally, let’s test the complex occlusion also with the indirect component.
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Direct + indirect illumination

- We take a look at the same scene.
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Direct + indirect illumination

Ours Wang OursWang

4.3x faster 4.3x faster

• We can see that the direct illumination noise again dominates the complete image 

when rendered using the method of Wang and Akerlund.

• Our method eliminates it and renders the complete image more than four times 

faster and without any artifacts.
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Direct + indirect illumination

OursWang

• There is one more interesting area in this scene: The statue is made of glossy 

metal, and even though our method does not take the surface BRDF into account, 

it performs significantly better even there.
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TESTS

• Performance

• Grid resolution

Direct only Direct + indirect

Simple occlusion

Complex occlusion

✓ ✓
✓ ✓

✓

ADVANCES IN MONTE CARLO RENDERING:  THE LEGACY OF JAROSLAV KŘIVÁN EK

• Recall that we divide the scene into regions by a uniform grid of a fixed resolution. 

We now test how this resolution affects the algorithm’s performance.
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Direct illumination only

• For that purpose we use this relatively large scene containing many lights.
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Wang Ours (64) No regression

Direct illumination only

3.6x faster

1 − 𝑝0 × 𝑁 est. 𝑘𝑑2 , ℎ𝑑4𝑝0 × 𝛿 est.

• With our default choice of 64 regions per the shortest grid dimension, our method 

performs more than three times faster than the method of Wang and Akerlund. So 

what about other grid resolutions? As it turns out, our method is rather insensitive 

to the actual grid resolution. And so even much smaller as well as much higher 

resolutions all perform roughly the same, as shown in the plot. This is due to the 

regression modeling of the distance falloff. Without the regression model we 

would have to use a much higher grid resolution, otherwise we would see sudden 

noise transitions between regions, as in the inset in the upper right corner.

51



CONCLUSION
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CONTRIBUTION

• Bayesian framework for robust adaptivity

• Optimal cluster sampling

• Algorithm for direct illumination

– Unbiased, adaptive, robust

– Easy to integrate into a path tracer
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• To conclude, the main contribution of our work is a Bayesian framework for 

adaptive/guided Monte Carlo quadrature. It enables exploiting the large potential 

of the adaptive sampling approach in Monte Carlo methods, while avoiding the 

biggest weakness of previous attempts – the lack of robustness.

• We applied this framework on the problem of direct illumination sampling. In the 

process we derived the optimal sampling distribution, taking variance into 

account, and developed an unbiased adaptive direct illumination algorithm with 

online learning of light sampling distributions. It is easy to integrate into a path 

tracer and suitable for interactive rendering (the up front cost is minimized as all 

learning happens on the fly during rendering).

• Our new framework is not limited to the direct illumination though and we are 

certain that other applications of adaptive sampling will benefit from it as well and 

it opens the path for many other tools of statistical machine learning (such as full 

Bayes or variational Bayes).
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TAKE HOME MESSAGE
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Machine Learning | Bayesian modeling

= 

Excellent framework for 

guided/adaptive Monte Carlo
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Multiple Importance Sampling
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In this part of the course, we will discuss recent advances for Multiple Importance Sampling
(MIS) – a technique to combine multiple rendering algorithms into a better one.



RENDERING GOAL: LOW NOISE IN SHORT TIME
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In Monte Carlo rendering, images contain noise. Eventually, given enough time, that noise will
disappear. The goal when developing rendering algorithms is to minimize the time it takes to
obtain a noise‐free image.



MULTIPLE IMPORTANCE SAMPLING (MIS)
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Technique A Technique B Combined (MIS)

3

When designing the “one” algorithm that can render all scenes at the lowest level of noise
possible, multiple importance sampling (MIS) plays an important role. It is unlikely that we
will find a single sampling technique that is robust and efficient enough to form the “one”
algorithm.

MIS allows us to combine multiple techniques into one algorithm, while retaining the
advantages of every individual technique. Here, we see an example that combines two
techniques “A” and “B”.

Technique “A” in this case performs well in the shadows but poorly for the direct illumination.
Technique “B” is the exact opposite. When combining both via MIS, their benefits add up and
we achieve a much nicer image overall.



MIS: ESSENTIAL FOR THE PATH TRACING REVOLUTION
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Veach and Guibas: “Optimally 

Combining Sampling 

Techniques for Monte Carlo 

Rendering.” 
SIGGRAPH ’95.

4

MIS was invented in 1995 by Veach and Guibas. It had such a tremendous impact that Eric
Veach was awarded the Scientific and Engineering Award in 2014.



MIS: INCREASES ROBUSTNESS, MAY REDUCE EFFICIENCY
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Basic MIS

Can we do better?

5

While it is a great tool, MIS is not perfect. Let us look at a different part of the “pills” scene.
Again we combine the same two techniques. On the packaging, one is almost perfect, the
other performs poorly.

Unfortunately, in MIS the samples are distributed among the two techniques and thus we
may get worse quality than with just one technique. So the question is: can we somehow do
better than that?



CAN WE DO BETTER?
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� Yes, with … 

– … better weighting functions

– … better sampling densities

– … better sample allocation

6

Fortunately, there is three ways how to improve upon MIS: better weighting functions, better
sampling densities, and better sample allocation. In the following, we will first briefly review
some required background, then we will discuss these possible improvements in more detail.



LIGHT TRANSPORT SIMULATION
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          𝑑𝒙 Pixel

𝒙𝐼pixel ൌ     𝑓ሺ𝒙ሻ
Contribution

Path 𝒙
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When we perform light transport simulation, we need to integrate over all light paths that
connect a pixel to a light source. For each such path, we compute its contribution to the
image. Monte Carlo integration and importance sampling are used to estimate that integral
efficiently.



IMPORTANCE SAMPLING
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𝑋  ~ 𝑝𝑋ଶ,  ~ 𝑝ଶ𝑋ଷ,  ~ 𝑝ଷ

𝐹 𝑓ሺ𝑋ሻ𝑝ሺ𝑋ሻൌ 1𝑛
          𝑑𝒙𝐹 ൌ     𝑓ሺ𝒙ሻ
𝑓

Integration domainIntegration domain

𝑝

8

Consider a simple integration problem, where we integrate a function 𝑓.
To estimate its integral, we use an importance sampling technique 𝑝 and we draw 𝑛 samples
according to it. We obtain an estimate of the integral by combining all samples.

The better we sample important parts of the integrand, the lower the variance of the
estimator. But what if we cannot find a single technique that would sample f well?



MULTIPLE IMPORTANCE SAMPLING
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Veach and Guibas [1995]

𝑝ଵ 𝑝ଶ 𝐹 ଵ
𝑋ଵ,  ~ 𝑝ଵ𝑋ଶ,  ~ 𝑝ଶ𝑋ଵ,  ~ 𝑝ଵ

1𝑛ଵ 𝑓ሺ𝑋ଵ,ሻ𝑝ଵሺ𝑋ଵ,ሻൌ
𝐹 ଶ 1𝑛ଶ 𝑓ሺ𝑋ଶ,ሻ𝑝ଶሺ𝑋ଶ,ሻൌ

𝑓
Integration domainIntegration domain

          𝑑𝒙𝐹 ൌ     𝑓ሺ𝒙ሻ
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Multiple importance sampling can help us. There might be another technique suited for
sampling a different part of 𝑓.
To use MIS, we generate another set of samples, from a different density 𝑝ଶ, forming another
estimator for the same integral.




𝐹

MULTIPLE IMPORTANCE SAMPLING
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Weighting functions Veach and Guibas [1995]

𝑝ଵ 𝑝ଶ
𝑤ଶ𝑤ଵ

1𝑛ଵ 𝑓ሺ𝑋ଵ,ሻ𝑝ଵሺ𝑋ଵ,ሻൌ
1𝑛ଶ 𝑓ሺ𝑋ଶ,ሻ𝑝ଶሺ𝑋ଶ,ሻ

𝑤ଵ 𝑋ଵ,𝑤ଶ 𝑋ଶ,
ൌ𝑓

Integration domainIntegration domain

Integration domain

          𝑑𝒙𝐹 ൌ     𝑓ሺ𝒙ሻ
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Each sample from the two techniques is weighted by a weighting function 𝑤. If we sum up
the weighted estimates, we achieve a new combined estimator, hopefully with lower
variance.

When chosen well, the weighting functions assign higher weight to the regions that are
sampled well by the corresponding density.



� Sample allocation
– Pajot et al. [2011]

– Lu et al [2013]

– Havran and Sbert [2014], Sbert et al. [2016], Sbert and Havran [2017], …

� Weighting functions
– Georgiev et al. [2012]

– Elvira et al. [2015; 2016]

– Kondapaneni et al. [2019]
– Grittmann et al. [2019]

� Sampling distributions

– Karlík etl al. [2019]

PREVIOUS ATTEMPTS TO IMPROVE MIS
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1𝑛ଵ 𝑓ሺ𝑋ଵ,ሻ𝑝ଵሺ𝑋ଵ,ሻ
1𝑛ଶ 𝑓ሺ𝑋ଶ,ሻ𝑝ଶሺ𝑋ଶ,ሻ

𝑤ଵ 𝑋ଵ,𝑤ଶ 𝑋ଶ,
𝐹 ൌ
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This basic recipe can be improved upon in multiple ways.

Most previous work has tackled the question of better sample allocation. Distributing the
available sample budget well across all techniques can significantly improve efficiency.

Less attention has been on finding better weighting functions. There are a few domain
specific enhancements to the original heuristics proposed by Veach and Guibas [1995]. We
will discuss how to derive the truly optimal weights, and how to enhance MIS with variance
information to tackle hard cases.

A novel avenue from improvement is adapting the sampling densities themselves.



PREVIOUS ATTEMPTS TO IMPROVE MIS
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� Sample allocation
– Pajot et al. [2011]

– Lu et al [2013]

– Havran and Sbert [2014], Sbert et al. [2016], Sbert and Havran [2017], …

� Weighting functions
– Georgiev et al. [2012]

– Elvira et al. [2015; 2016]

– Kondapaneni et al. [2019]
– Grittmann et al. [2019]

� Sampling distributions

– Karlík etl al. [2019]

1𝑛ଵ 𝑓ሺ𝑋ଵ,ሻ𝑝ଵሺ𝑋ଵ,ሻ
1𝑛ଶ 𝑓ሺ𝑋ଶ,ሻ𝑝ଶሺ𝑋ଶ,ሻ

𝑤ଵ 𝑋ଵ,𝑤ଶ 𝑋ଶ,
𝐹 ൌ
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We will discuss these

In the remainder of this part of the course, we will provide an overview over these three
approaches. More details can be found in the respective papers:

[Kondapaneni et al. 2019]
Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, Jaroslav
Křivánek.
Optimal Multiple Importance Sampling.

[Grittmann et al. 2019]
Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, Jaroslav Křivánek.
Variance‐Aware Multiple Importance Sampling.

[Karlík et al. 2019]
Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, Jaroslav Krivanek.
MIS compensation: optimizing sampling techniques in multiple importance sampling.



OPTIMAL MULTIPLE 
IMPORTANCE 
SAMPLING

[Kondapaneni et al. 2019]
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We start with our research on optimal MIS weights. First we will show, that the balance
heuristic is further from the optimum than has been believed so far. Then we will show that
provably optimal weights, minimizing the variance of an MIS estimator, exist and have a
closed form solution. With that closed form solution, we will also show that the optimal
weights are equivalent to a control variate. And lastly, we will show that the optimal weights
are not a mere theoretical construct: They lend themselves to a practical implementation in
light transport.



BALANCE HEURISTIC
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� Simple weighting functions:

� Close to optimal
– tight variance bounds by Veach and Guibas [1995]

– no other strategy can do much better

� ⇒ A de facto universal solution

𝑤 𝑥 ൌ 𝑛𝑝ሺ𝑥ሻ∑𝑛𝑝ሺ𝑥ሻ

We start with the balance heuristic bounds. The balance heuristic was introduced by Veach
and Guibas [1995] and together with the so called power heuristic it is very popular in Monte
Carlo rendering. The balance heuristic weights are very easy to compute, as they
are proportional to the sampling density times the number of samples. Apart from their
simplicity, the authors of the original work were able to prove that these weights are also
close to optimal. According to the tight variance bounds derived by Veach and Guibas, no
other weights can achieve much lower variance.

For these reasons, the balance heuristic gained big popularity and has been used as a de facto
universal solution.



MIS: INCREASES ROBUSTNESS, MAY REDUCE EFFICIENCY
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MIS with our 

optimal weights

10x better!

We illustrate the balance heuristics effect on a simple example. In the above staircase scene,
we combine two techniques to render direct illumination. We can see that one is almost
perfect on the wall above the stairs, while the other performs poorly there.
And in such settings, unfortunately, MIS with the balance heuristic keeps some of the error of
the worse technique. So, in more general terms, the balance heuristic improves robustness,
but can reduce efficiency. Our research question was: can we somehow do better than that?

The simple answer: yes, we can. We call our solution the optimal MIS weights, because they
are provably optimal for a given allocation of samples to each technique (and assuming
independency of samples). Before delving into the details, let us point out that in the above
example, these optimal weights keep the lower error of the almost perfect technique. Also
the image overall has a ten times lower level of noise.



BALANCE HEURISTIC
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� Simple weighting functions:

� Close to optimal
– tight variance bounds by Veach and Guibas [1995]

– no other strategy can do much better

� ⇒ A de facto universal solution

But what about our 10x speedup?

We show that it

does not hold!

𝑤 𝑥 ൌ 𝑛𝑝ሺ𝑥ሻ∑𝑛𝑝ሺ𝑥ሻ

If we return to what has been said about the balance heuristic a bit earlier, we can
wonder: How could we get this 10‐times speedup when the balance heuristic was supposed
to be almost optimal? The reason lies in the fact that the variance bounds do not hold! At
least not in a fully general setting. This observation forms the first of our contributions.



VARIANCE BOUNDS DERIVATION

ADVANCES IN  MONTE CARLO RENDERING:  THE LEGACY OF J AROSLAV KŘ IVÁNEK 17

Veach and Guibas [1995]
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# samples

Balance
Heuristic (BH)

(Alleged) variance 
bounds for BH

Step 1: Find 𝑤 that minimize 𝑀2

Step 2: Find upper bound

V 𝐹 ൌ M2െM1ଶ

When deriving the bounds Veach and Guibas considered the variance of an MIS estimator
split into two terms, M1 representing the mean and M2 representing the second moment of
an estimator. By minimizing the M2 part, they obtained the balance heuristic. We plot the
variance of the resulting estimator vs. total number of samples on the right.

Then, the authors bounded the second term from above, which gave them a conservative
estimate of how much better the 'best' possible weighting functions might be with respect to
the balance heuristic. In other words no alternative weighting functions yield an estimator
with variance below the dashed blue line in the graph.



ASSUMPTION: POSITIVE WEIGHTS

ADVANCES IN  MONTE CARLO RENDERING:  THE LEGACY OF J AROSLAV KŘ IVÁNEK 18
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(Veach & Guibas)
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Balance
Heuristic (BH)

???

However, we investigated their derivation further and realized that they assumed only
positive weights are allowed, restricted to the interval 0 and 1. But the MIS framework allows
for weights which are not restricted!

This simple fact has not been recognized up until now. Removing the restriction of positive
weights invalidates Veach's bounds and it opens a possibility that the truly optimal MIS
weights have much lower variance.

Now we know that the optimal solution can be much better than the bounds suggest. But
how can we compute it?



OPTIMAL WEIGHTS –
DERIVATION AND 
PROPERTIES
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In the following, we show how to derive the optimal weights.



OPTIMAL WEIGHTS DERIVATION
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Vሾ 𝐹 ሿ ൌ M2 െ M1ଶ

Our work: 
Minimize the entire expression

V
a

ri
a

n
ce

# samples

Balance
Heuristic (BH)

Our optimal weights

Veach and Guibas: Find 𝑤 that minimize 𝑀2

Our starting point is again the MIS variance formula. But instead of minimizing just the first
part, we apply calculus of variations to minimize everything in terms of weighting functions.

That gives us provably optimal weights. These weights can have negative values, and in fact
that happens in many cases. But they always sum up to one, which is the necessary condition
to achieve unbiasedness within the MIS framework.



𝑤 𝑥 ൌ 𝛼𝑝ሺ𝑥ሻ𝑓ሺ𝑥ሻ  𝑛𝑝ሺ𝑥ሻ∑𝑛𝑝ሺ𝑥ሻ  1 െ ∑𝛼𝑝ሺ𝑥ሻ𝑓ሺ𝑥ሻ
OPTIMAL WEIGHTS FORMULATION
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Balance heuristic

𝛼ଵ⋮𝛼ே
𝑎 ൌ  න 𝑝𝑝∑𝑛𝑝 𝑏 ൌ න 𝑝𝑓∑𝑛𝑝

𝑨 𝒃
𝑎ଵଵ ⋯ 𝑎ଵே⋮ ⋱ ⋮𝑎ேଵ ⋯ 𝑎ேே ൌ 𝑏ଵ⋮𝑏ே𝑁 ൌ # sampling 

techniques

(1)

(2)

The optimal weights obtained from minimization then have the form of Eq. 1.

Note that they include the balance heuristic as part of their formulation. Also note that they
include the integrand f itself in the denominators, which is very uncommon among
combination strategies widely used. The formula also contains additional coefficients, which
we denote alpha. There are as many of these coefficients as there are sampling techniques.

The alphas are the solution to the linear system in Eq 2. represented by a matrix A and a
vector b, where the matrix A’s size is N‐by‐N and the vector b is a column vector of length
N. The individual elements forming the matrix A resemble projections of sampling techniques
onto themselves, and elements of the vector b resemble a projection of f into a system of
sampling techniques.

To compute the optimal weights, we need to first compute and solve the linear system. The
resulting alphas can then be used to compute the actual weights.



𝑓

EQUIVALENCE TO OPTIMAL CONTROL VARIATES
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MIS EstimatorOptimal 𝑤 Control Variate 
Estimator

𝑓 െ 𝑔𝑓 𝑔
𝐺 𝐹 െ 𝐺𝐹

𝑔 ൌ ∑𝛼𝑝
(1)

We also found that there is a relationship between the optimal MIS weights and optimal
control variates.

Control variates are a variance reduction technique, where the control variate estimator 𝐹 is
obtained as a linear combination of the original estimator of 𝐹 with a correlated estimator of𝐺 in such a way that the mean value does not change, as we can see in Eq. 1. We can also see
it as estimating an integral of a linear combination of integrands 𝑓 and 𝑔.
If we take the formula for our optimal weights and plug it into the formula for an MIS
estimator, the resulting estimator also has the form of Eq. 1, which means that it is equivalent
to a control variate. In our case, the function g is a linear combination of the sampling
techniques, where the coefficients are the alphas.



EQUIVALENCE TO OPTIMAL CONTROL VARIATES
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� Owen and Zhou [2000]

� Setup

– MIS + control variate

– Form 𝑔 ൌ ∑𝛽𝑝
� Result

– Optimal coeff. 𝛽

� Our approach

� Setup

– MIS framework

� Result

– Optimal MIS weights

𝛽 ൌ 𝛼
Later, we found out that control variates of this form have been studied before, the most
related work is by Owen and Zhou. And we found out that they reached the same result as we
do, but from a different starting point (and with different implications).

They assumed the Balance heuristic used together with a Control variate (CV). Then they
limited themselves to CVs formed as some linear combination of the sampling techniques and
they found the optimal coefficients in this space. That by itself does not give any implications
about MIS weights as such.

We, on the other hand, took the MIS framework and without any further assumptions we
found the provably optimal MIS weights. Then we showed that all CVs of the linear
combination form are equivalent to some MIS weights and that the optimal solutions to both
problems are the same. Effectively we found the relation between two seemingly unrelated
variance reduction techniques.

We believe this will allow borrowing theory from both ends to achieve further interesting
insights, and that it will help steer the further investigation of MIS and Control variates.



PRACTICAL 
IMPLEMENTATION & 
RESULTS
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Knowing the optimal solution in theory is one thing, practical use of that knowledge is
another. Let us demonstrate that the optimal weights can be efficiently used in practice, in a
light transport application.



HOW TO COMPUTE?
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𝑎 , 𝑏 can be estimated from drawn samples

𝛼ଵ⋮𝛼ே𝑨 𝒃
𝑎ଵଵ ⋯ 𝑎ଵே⋮ ⋱ ⋮𝑎ேଵ ⋯ 𝑎ேே ൌ 𝑏ଵ⋮𝑏ே

𝑎 ൌ  න 𝑝𝑝∑𝑛𝑝 𝑏 ൌ න 𝑝𝑓∑𝑛𝑝

Recall the linear system we must solve to obtain the alpha coefficients in the optimal
weights. The elements of A and b are defined as integrals, but they can be easily estimated
from the samples we draw when computing the MIS estimator. For that we suggest two
possible practical implementations.



Progressive algorithm

result 
 
← ∑𝛼

𝜶  
 
← solve 𝑨𝜶 ൌ 𝒃Update 𝑨,𝒃

𝑴 x

HOW TO COMPUTE?
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Draw samples from all 
techniques

𝜶 
 
← 0,  result 

 
← 0

result 
 
← result/𝑵𝜶  

 
← solve 𝑨𝜶 ൌ 𝒃Update 𝑨,𝒃

result 
 
← result  𝐹௧

given current 𝜶
Draw samples from all 

techniques

𝜶 
 
← 0,  result 

 
← 0𝑵 x

Direct algorithm

The first one is called Progressive. After the initialization, we first draw samples from all
techniques. Then, we accumulate the MIS estimate using the optimal weights, computed with
alphas estimated from all previously seen samples. We update the linear system and re‐
compute the alphas. This is repeated several times, and finally, after leaving the loop, we
return average of all the estimates.

The second approach how to implement the optimal weights is based on an observation that
a sum of the estimated alphas also forms an estimator of the integral F. We call the resulting
algorithm Direct. Here, instead of using the optimal weights formula for mixing the individual
contributions, we just keep updating the linear system. After leaving the main loop, we solve
the system for alphas and the result is then formed as their sum. While this algorithm is
slightly biased, it is consistent and more efficient than the Progressive one.

We implemented and tested both algorithms and applied them to the problem of direct
illumination. In practical terms, they mostly differ in a low sample count setting, and for high
sample counts they have very similar properties. For that reason we will show only the results
obtained by the direct algorithm (for further details see the original paper).



COMBINING STANDARD TECHNIQUES
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Trained technique

Uniform technique

Light A

Light B

When using the optimal weights we explored two directions: applying them to standard
techniques and designing new techniques.

Let us start by showing the results for standard techniques. We will use the staircase scene
from the very beginning, where the scene is illuminated by two lights, above and below the
stairs. In a path tracer, whenever we are shading a point, we must randomly select one of the
lights and compute its contribution. The light selection strategy has a strong impact on the
result.

Suppose we have a technique which samples the lights according to their unoccluded
contribution. We call this technique Trained. We can see it works nicely in places illuminated
by both lights and much worse when light occlusion occurs. Occlusion dramatically influences
the contribution of each light at the shading point.

For the other technique, which distributes samples across the lights uniformly (and we call it
Uniform), we see the opposite effect: it works much better in shadows.



COMBINING STANDARD TECHNIQUES

KONDAPANENI ,  VÉVODA,  GRITTMANN,  SKŘ IVAN,  SLUSALLEK,  KŘ IVÁNEK - - OPTIMAL 
MULTIPLE IMPORTANCE SAMPLING 28

Balance heuristicOur optimal weights

13x better

Trained technique

Uniform technique

When we combine the two respective techniques, using MIS with the balance heuristic, we
obtain decent results, where we no longer see the excessive noise from the Trained technique
in the shadow. But in unoccluded regions, where the Trained technique performed well alone,
the result is now compromised by the uniform technique.

Using the optimal weights, we can see much better results. They even out‐perform the
individual sampling techniques where they performed well already. The reason behind this
behavior is in the optimal weights acting as control variates.



REMINDER: OPTIMAL WEIGHTS ARE CONTROL VARIATES
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The closer 𝑓 െ 𝑔 to zero, the smaller the variance

𝑓 െ 𝑔𝑓 𝑔
𝐺 𝐹 െ 𝐺𝐹

𝑔 ൌ ∑𝛼𝑝

The control variate functionality of the optimal weights then lead us to investigate usage of
alternative sampling techniques, which nobody would normally think of in an MIS setting.

To recap, the optimal weights represent a control variate formulation, where a function g,
formed by the linear combination of the sampling techniques, acts as a control variate for the
integrand. And the closer the control variate g is to the integrand, the lower the variance will
be.



INSIGHT: “BAD” TECHNIQUES CAN REDUCE VARIANCE
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Techniques Control variate

𝑓ሺ𝑥ሻ𝑝ଵሺ𝑥ሻ
𝑝ଶሺ𝑥ሻ

𝛼ଵ𝑝ଵ 𝑥  𝛼ଶ𝑝ଶ 𝑥

Therefore, we design sampling techniques in a way that improves their linear combination.

Consider this illustration where the dashed line is the function f that we want to integrate. For
that, we have a uniform sampling technique, shown in orange. To improve the expressive
power of the linear combination, we add the blue technique. For importance sampling, this
technique would be a horrible choice.

For a control variate, however, we achieve a close to perfect linear combination, the red line
on the right. Now we will apply this idea in a rendering context.



CAN WE DO EVEN BETTER?
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Light (parallel) Light (at angle)

Spherical
technique

Uniform area
technique

Parallel
technique

Consider the sketched example of two Lambertian area lights, positioned parallel to the
surface or at an angle. We want to compute the direct illumination form those lights onto a
diffuse surface.

Also consider the following sampling techniques:
� the spherical technique, which samples uniformly the light’s projection onto the

hemisphere,
� the uniform area technique, which samples uniformly the light’s surface. Note that the

uniform area technique is non‐uniform when expressed on the spherical domain.

For a light which is parallel to the surface, a linear combination of the Uniform and Spherical
techniques can compensate for the cosine geometry factor at the surface. This assumption
breaks, when the light is at an angle. Then, the spherical and uniform area techniques will be
similar, and their linear combination will have less expressive power. To achieve a similar
effect as before, which would work regardless of light orientation, we introduce a completely
new technique: sampling the parallel projection of the light source area. For a light which is
parallel to the surface it behaves identically to the uniform‐area technique and otherwise it
tries to sample a proxy light parallel to the surface.



ALONE, THE PARALLEL TECHNIQUE IS EVEN WORSE
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Uniform area 
technique

Spherical 
technique

Parallel 
technique

Now, let us compare these techniques in a simple scene, the dining room, which is
illuminated by a single rectangular light above and parallel to the table.

We can see that the spherical technique alone produces a nice image overall, while the
uniform area sampling has a higher level of noise throughout. We can also see that the
parallel projection is not a sensible technique on its own. The level of noise is significantly
higher than with either of the other two techniques.



Spherical 
+

Uniform area

WITH OUR OPTIMAL WEIGHTS: EVEN BETTER
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1.7x worse 3.4x better

Spherical
+

Parallel

1.9x better

Spherical 
alone 

(baseline, 20spp)

Now we show their combination using the optimal weights. Instead of taking 20 samples per
pixel from the Spherical technique alone, we replace half of them by samples from either the
Uniform or the Parallel technique. And, as expected, the combination of Spherical and
Uniform yields better results than using Spherical technique alone on the surfaces parallel to
the light. The combination of Spherical and Parallel is even better and improves also on
surfaces which are at an angle with the light.



LIMITATIONS
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The optimal weights have also their drawbacks and limitations.



LIMITATIONS: SALT & PEPPER FOR FEW SAMPLES
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2 spp 16 spp4 spp 8 spp

Optimal weights / Balance heuristic

For example, when using either the progressive or direct version of our algorithm, we can
observe salt and pepper noise for very low sample counts. That is caused by instability of the
linear system we need to solve for the alphas. This type of noise can be easily denoised if such
low sample counts are really needed.



LIMITATIONS: OVERHEAD
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� Overhead for a large number 𝑁 of techniques𝑎ଵଵ ⋯ 𝑎ଵே⋮ ⋱ ⋮𝑎ேଵ ⋯ 𝑎ேே 𝛼ଵ⋮𝛼ே ൌ 𝑏ଵ⋮𝑏ே𝑁 ൈ 𝑁 matrix

Another issue is the overhead when using the optimal weights, as the linear system
complexity is quadratic with the number of sampling techniques used. This is relevant for
example in a bi‐directional path tracer, where for each path length we have corresponding
number of techniques which need to be combined.



VARIANCE-AWARE MIS

[Grittmann et al. 2019]
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As a cheaper, albeit not optimal, alternative for more complex applications like bidirectional
path tracing, we discuss a method that enhances the balance heuristic with variance
estimates.



A USE-CASE: BIDIRECTIONAL PATH TRACING
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Simple direct illum.

Difficult indirect illum.

We will primarily focus our discussion on one common application of MIS: bidirectional
estimators that combine paths from the camera with paths from the light sources.

The motivation to use such bidirectional methods, for example the classical Bidirectional Path
tracer (BDPT) [Veach and Guibas 1995a] [Lafortune and Willems 1993], is visible in this scene.

A path tracer, which starts from the camera, is quite good at rendering effects like the direct
illumination on the table of this scene, but not so good at the difficult indirect illumination on
the wall. Tracing paths from the light sources can help with the indirect illumination. Hence
combining both should produce a robust algorithm.

This scene is a very good example for a scene where bidirectional path tracing is particularly
useful.



A FAILURE CASE: BIDIRECTIONAL PATH TRACING
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Path tracer Path tracer + Bidir.

(Balance heuristic)

Unfortunately, the scene is also an example where MIS for bidirectional path tracing goes
wrong. The two zoom‐ins compare the rendered result of just the path tracer (left) and the
combined method (right).

The balance heuristic combination contains the exact same samples that the path tracer is
using, and some additional bidirectional samples. In other words, the samples on the left are
taken and some additional work is done on top of them. The reward? Significantly higher
levels of noise in the simple direct illumination.



OUR CONTRIBUTIONS
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� Variance reduction effects ignored by MIS

� Example: stratification

� A new heuristic: MIS + variance estimates 

In the following, we discuss our approach to fix this regression.

First, we analyze what is causing the issue. As it turns out, there is a number of variance
reduction techniques that are completely ignored by the balance heuristic. We show that the
poor behavior in the previous example can be traced back to the balance heuristic’s disregard
for sample stratification.

We propose a simple yet effective trick to rectify the problem: Enhancing the balance
heuristic, or any other MIS heuristic for that matter, with variance estimates.



MIS IGNORES 
STRATIFICATION

(and other effects)
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There are variance reduction methods which are ignored by the balance heuristic. This leads
the balance heuristic to “believe” that one technique in the mix has a higher variance than it
actually does. As a result, that technique receives a too low weight, harming the overall result
if it is, in fact, the best technique for a certain effect. Just like the path tracer was the best
technique for the direct illumination in the previous example, yet the weight it received by
the balance heuristic was far too low.

Examples for such variance reduction methods are stratification and sample correlation, for
example due to splitting. We will use stratification as an example in the following.



NO IMAGE PLANE STRATIFICATION (E.G. BDPT)
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One sample per pixel

First, let us recap what sample stratification means. We consider the simple, yet very
important, case of image plane stratification. If every pixel of an image receives exactly one
sample, we say that we have achieved image plane stratification. This means that there is no
randomness, and hence no variance, in whether a pixel receives any value at all. Almost all
techniques that start paths from the camera can be naturally stratified on the image plane.
This is one of the most important properties that makes those techniques so successful.



NO IMAGE PLANE STRATIFICATION (E.G. BDPT)

43

Sample over entire image
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One sample per pixel

In contrast, if paths are traced bidirectionally, we often have no control over which pixels
receive a value. We do not have image plane stratification. On the one hand, this additional
uncertainty adds variance. On the other hand, distributing samples freely over the image can
also reduce variance, because sampling can focus on caustics and other regions of focused
illumination.

The lack of image plane stratification is the reason why bidirectional methods perform well
for focused indirect illumination, like caustics. It is also the reason why they do not perform
well for smoother illumination, like the direct illumination in the example shown in the
beginning. It is a curse and a blessing.



EFFECTIVE DENSITY WITH STRATIFICATION
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One sample per pixel

With uniform sampling 
and equal pixel sizes

Effective density: 

1 ൈ 1

pixel_area
ൌ num_pixels

image_area
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But why is (image plane) stratification a problem for the balance heuristic?

Let us consider a simple case, where samples are taken uniformly over the image, but
stratified. One sample is taken in each pixel, uniformly over the surface area of the pixel.

The effective density, i.e., the term used by the balance heuristic, then boils down to the ratio
of the number of pixels to the total surface area of the image.



Sample over entire image

EFFECTIVE DENSITY WITHOUT STRATIFICATION
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With uniform sampling 
and equal pixel sizes

Effective density: 

num_pixels ൈ 1

image_area

The same!
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Now, let us pretend we had the exact same sample distribution, yet without the stratification.
This can happen if the light tracer samples paths with a very similar distribution as the path
tracer.

We still take the same number of samples as there are pixels in the image, but each is
distributed uniformly over a larger domain, the entire area of the image. The resulting
sampling density is the number of pixels, divided by the surface area of the image. The exact
same result as the stratified version!

The balance heuristic uses the same values for both techniques when combining them.
Unfortunately, the variance of the stratified version can be considerably lower than the
unstratified one. The resulting combination can perform poorly, as we have observed in the
example in the beginning.



AN ALTERNATIVE TO 
MIS

Variance-based weighting
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Before we discuss how to enhance the balance heuristic to better handle such combinations,
we review an alternative approach to MIS: weighting each technique with a constant factor,
namely its reciprocal variance.



COMBINING ESTIMATORS

47

Second technique Estimated variance (𝜎ଶ)First technique Estimated variance (𝜎ଶ)
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Given two techniques, we can estimate their variances in a number of different ways. We
might even have an analytical solution or approximation of the true variance.

In this example scene, two techniques have very different variances in different regions of the
image. Intuitively, it is apparent that we could combine the two, using the pixels from that
technique that has lower variance locally.

Such combinations are, in fact, relatively common, especially in scenarios where MIS
weighting is not possible. For example, because pdfs are unknown or storing individual
samples is too costly.



COMBINING ESTIMATORS

48

Second techniqueFirst technique Combined image
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Indeed, using the variance based weighting approach in this simple example produces results
that are on par with the balance heuristic combination.



TWO SIMPLE HEURISTICS
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Coarse

Relies on estimates

Accounts for all effects on the 
variance

Fine grained

Uses exact values

Ignores some variance altering 
effects

Variance-based Balance heuristic MIS

When comparing the variance‐based weighting approach with MIS, there are three key
differences.

Variance‐based weighting is done globally, for example per pixel, whereas MIS can weight
individual samples. This gives MIS an edge to further reduce variance in many cases.

Additionally, we often have to estimate variances. If the estimates are off, the resulting
combination can be poor, or even show artefacts. The balance heuristic, on the other hand,
relies solely on known exact quantities. The balance heuristic might not always produce the
best image, but it will not produce artefacts either.

The important benefit of the variance‐based approach, however, is that, by definition, it
always considers all effects on the variance. It would not suffer the same problems as the
balance heuristic when faced with, for example, differences in image plane stratification.



OUR NEW HEURISTIC
Combine the two!
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So how can we achieve a better result? We use the same underlying idea of MIS: given two
approaches that complement each other well, we combine them. In this case, we combine
the balance heuristic with variance estimates. We do so in a fashion that retains the benefits
of both methods.



VARIANCE AND THE BALANCE HEURISTIC

51

� The optimal weights minimize the variance of each technique 𝑡
� The balance heuristic ignores a residual 𝑟௧

𝜎௧ଶ ൌ න 𝑓ଶ 𝑥𝑛௧𝑝௧ 𝑥ஐ 𝑑𝑥 െ 𝑟௧
Minimized by balance

Minimized by optimal weights
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There is different ways to enhance the balance heuristic with variance estimates. To find the
best one, we investigate the variance of a single technique 𝑡, 𝜎௧ଶ, as shown on this slide.
Optimally, we would like to find MIS weights that will minimize this full variance for every
single technique. The balance heuristic only considers the integral term, the second moment
of the primary estimator, divided by the number of samples. This term is an upper bound for
the variance of any Monte Carlo estimator. There is, however, always some residual term 𝑟௧
that will be ignored.



THE RESIDUAL DIFFERS BETWEEN TECHNIQUES

52

� Simplest case: 𝑟௧ ൌ ଵ  𝜇௧ଶ
� With stratified samples: 𝑟௧ ൌ ∑ 𝜇௧,௦ଶୱ୲୰ୟ୲ୟ
� With correlated samples: 𝑟௧ ൌ Cov  ଵ 𝜇௧ଶ
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Unfortunately, the ignored residual also differs between techniques. In the simple case of
independent, unstratified samples, it is merely the squared ground truth divided by the
number of samples. With stratification, it is the sum of the squared mean values of all strata.
With correlated samples, it also contains some covariance term. If we had a combination that
contained all three kinds of techniques, results are likely to be poor when using the balance
heuristic.

This is the mathematical reason for the observation that we have made before. The balance
heuristic ignores effects like image plane stratification, because these only change the
residual term.



WHEN IS THE BALANCE HEURISTIC OPTIMAL?

53

� When the residual is tiny:

� i.e., when variance is high

න 𝑓ଶ 𝑥𝑛௧𝑝௧ 𝑥ஐ 𝑑𝑥 ≫ 𝑟௧
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There is also another interesting observation to be made here. Whenever the residual term is
tiny in comparison, the balance heuristic will perform well. This happens whenever the
variance of all techniques is relatively high.

In other words, if no technique in a combination clearly outperforms the others, the balance
heuristic will perform reasonably well, maybe even optimally.



VARIANCE FACTOR
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� We compute the ratio between the considered term and the full variance:

� And modify the balance heuristic with it:

𝑣௧ ൌ  𝑓ଶ 𝑥𝑛௧𝑝௧ 𝑥ஐ 𝑑𝑥𝜎௧ଶ
𝑤௧ 𝑥 ൌ 𝑣௧𝑛௧𝑝௧ 𝑥∑ 𝑣𝑛𝑝 𝑥
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We now use these observations to derive a factor that we can plug into the balance heuristic
weight. We compute the ratio of the term that the balance heuristic minimizes and the full
variance. This ratio will be one if the balance heuristic minimizes the full variance. It will be
very large if the balance heuristic considerably overestimates the actual variance.

More details on the derivation can be found in the paper [Grittmann et al. 2019].



BEHAVIOUR OF OUR WEIGHTS
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� Low variance: increase weight

– Where balance is known to perform poorly

� High variance: balance heuristic

– Where balance works well

𝑣௧

1

𝜎௧ଶ
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If the variance of a technique is high, our additional factor quickly decays to one. That is, we
will produce the exact same weighting as the balance heuristic in such a case.

In contrast, if the variance is low, we considerably increase the weight assigned to that
technique.

Previous work, even when first introducing the balance heuristic [Veach & Guibas 1995], has
observed that the balance heuristic assigns too low weights for techniques that have low
variance. Our method also rectifies that shortcoming.



RESULTS: BDPT
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Now, let us see how the resulting weights fare when used in practice. We have implemented
the weights in a bidirectional path tracer. Variances are estimated from a single sample per
pixel, at no measurable overhead. Details on the implementation can be found in the paper
[Grittmann et al. 2019].



BIDIRECTIONAL PATH TRACING
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� Path tracing is stratified on the image plane

� Light tracing is not

ADVANCES IN  MONTE CARLO RENDERING:  THE LEGACY OF J AROSLAV KŘ IVÁNEK

In a bidirectional path tracer, we are tracing paths from the camera, which are stratified on
the image plane. These paths are combined with paths from the light sources. The paths from
the lights might be stratified across the lights, but they are not stratified over the image
plane: it cannot be guaranteed that every pixel receives one.



RESULTS: IMPROVEMENT IN FAILURE CASES
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Path tracing Balance Power Ours

40% worse 3 ൈ better
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We can see what problems this might cause, in this classical example scene for MIS. The crops
on the right compare results on the diffuse wall behind the lights.

The path tracer samples the direct illumination there with almost no variance, thanks to the
image plane stratification.

The bidirectional path tracer, using the balance heuristic, produces a significantly worse image
by assigning too high weights to the light tracer.

One might be tempted to use the power heuristic instead. After all, the power heuristic was
also introduced to fix cases where one technique has very low variance. Unfortunately, the
power heuristic performs even worse than the balance heuristic here, by assigning even
higher weights to the unstratified light tracer.

Our weights ensure robustness, producing the same result as the path tracer alone.



RESULTS: NO HARM DONE OTHERWISE

59

Path tracing Balance Power Ours

20% worse 1% better
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This scene features focused direct illumination, which the light tracer is quite good at. This
time, the path tracer has higher variance and the balance heuristic performs quite well.
Interestingly, the power heuristic yet again performs worse than the balance heuristic, this
time by assigning too high weights to the path tracer.

Our variance factors in this case are almost one, producing the same result as the balance
heuristic with some marginal improvements.



RESULTS: MORE ROBUST THAN VARIANCE ALONE
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Ours

Variance-only
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Robustness is an important feature of our weights. Here, we compare results to a purely
variance‐based approach, where we are using variance estimates from a large number of
samples per pixel.

Despite being based on the same variance estimates, our method shows none of the artefacts
while also improving upon the balance heuristic.



SOURCE CODE
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� https://github.com/pgrit/var-aware-mis-pbrt
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You can find our PBRT implementation by following the link or scanning the QR code.



MIS 
COMPENSATION

[Karlík et al. 2019]
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MIS: INCREASES ROBUSTNESS, MAY REDUCE EFFICIENCY
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Basic MIS MIS Compensation

Our contribution

2.75x speedup

In the previous part of this course, we were optimizing the weights of a given, fixed
combination of techniques.

In this part of the course, we will tackle MIS improvement from a slightly different angle.
Unlike the other approaches, that try to tweak how sampling techniques are combined, we
directly modify one of the sampling techniques, so that the MIS combination performs
better.



OUR APPROACH: 3 LINES OF CODE
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We will show that this not only allows us to significantly speed up rendering, but we will be
able to achieve this with just three lines of a simple code.



OUR APPROACH: MOTIVATION
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Integration domain

𝑝ଵ 𝑝ଶ
𝑓 Imposed by the 

renderer

MIS 𝑝ଵ⊕𝑝ଶ
Integration domain

𝑓

Let us illustrate our insight on a simplified integration problem depicted on the left, where we
want to integrate 𝑓 over an integration domain.

In rendering, it often happens that we have one technique 𝑝ଵ, that is in many regions similar
to the integrand, but under‐samples the integrand in some other regions. We also have a
second technique 𝑝ଶ, imposed by the renderer, which is not possible to modify. As a practical
example of 𝑝ଶ we can take sampling according to the BRDF, as it is often used for more than
one purpose, like computation of both direct and indirect illumination.

The MIS combination of these two techniques (depicted on the right), using the standard
balance heuristic and the same number of samples for each technique, will give us a
combined density shown in purple. And as we can see, the resulting combined pdf is far from
perfect – it still oversamples some parts of the integrand and, consequently, under‐samples
others.



OUR APPROACH: MIS COMPENSATION
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Integration domain

𝑝ଵ MIS 𝑝ଵ⊕𝑝ଶ
Integration domain

𝑓𝑝ଵ‐ MIS Compensation

MIS 𝑝ଵ⊕𝑝ଶ

To improve this, we first realize that the technique 𝑝ଶ, imposed by the renderer, already
samples some parts of the integrand well. What we would like to do is to modify the sampling
technique 𝑝ଵ to focus more on parts that are under‐sampled by the other technique, here
highlighted in blue.

And that is exactly what our method, MIS compensation, does – it modifies one of the
sampling techniques with respect to MIS. Thanks to MIS compensation, the resulting pdf, here
drawn in red, is a much closer match to the integrand than when using the unmodified
sampling techniques. Using MIS compensation thus decreases the estimator’s variance.



Integration domain

OUR APPROACH: INTUITIVE FORMULA
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1. 𝐹 ൌ ሺ௫ሻభమ భ ௫ ାభమ మሺ௫ሻ

2. 𝑓 𝑥 ൌ 𝐹 ൌ ሺ௫ሻభమ భ ௫ ାభమ మሺ௫ሻ
MIS

𝑝ଵ 𝑝ଶ
𝑓

MIS 𝑝ଵ⊕𝑝ଶ

OPTIMIZE

Now let us discuss how exactly we apply MIS compensation. The modification of the sampling
technique can be derived intuitively. We formulate the problem as follows:

� We start with a one‐sample MIS estimator, using the balance heuristic with an equal
number of samples allocated to each technique. The denominator of the estimator
then corresponds to the combined pdf given by the balance heuristic.

� Our goal is to, ideally, obtain a zero variance estimator – meaning that the estimate
will be equal to the integral for any number of samples.

� We want to achieve that goal by making 𝑝ଵ a free function to optimize.

What is the solution for 𝑝ଵ, under this problem setup?



Integration domain

OUR APPROACH: INTUITIVE FORMULA
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� Invalid PDF: unnormalized and/or negative

𝑝ଵ
𝑝ଵ 𝑥 ൌ 2

𝑓 𝑥𝐹 െ 𝑝ଶ 𝑥 , 0

Ideal PDF

Compensation

Simple algebra yields a formula for 𝑝ଵ, where we subtract from the ideal zero‐variance pdf the
value of pdf of the fixed technique 𝑝ଶ. This way we compensate for the MIS combination with𝑝ଶ. However, the formula can give us an invalid pdf – it can be unnormalized or even negative.



𝑝ଵ 𝑥 ൌ 2
𝑓 𝑥𝐹 െ 𝑝ଶ 𝑥 , 0

OUR APPROACH: INTUITIVE FORMULA
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� Ensuring validity: max and normalization 𝑏
� Ad-hoc, but close to provable optimum

𝑝ଵ
𝑝ଵ 𝑥 ൌ ଵ max                           , 0

Integration domain

To ensure the resulting pdf is normalized and non‐negative, we apply a max operator and
renormalize, which gives us the final formula. While this last step in our derivation is ad‐hoc,
we show in our paper that this solution is close to the provable optimum.



APPLICATION #1
IMAGE-BASED 
LIGHTING
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Let us illustrate one of the applications of our MIS compensation technique – Image based 
lighting.



IMAGE-BASED LIGHTING
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𝜔𝜔
n

x

𝜃𝐿
𝐵𝑅𝐷𝐹

𝐹ሺx,𝜔ሻ ൌ න 𝐿 · 𝐵𝑅𝐷𝐹 · 𝑐𝑜𝑠𝜃 · 𝑉 𝑑𝜔ு

Realistic illumination can often be defined by an HDR texture that is spherically mapped
around the scene. To compute the illumination at a point 𝑥 as seen along the outgoing
direction 𝜔 we take the emission from the HDR map coming from direction 𝜔, multiply it by
the BRDF, by the cosine at the surface, and by the visibility term. Then we integrate it over all
incoming directions on the hemisphere.



BASIC MIS
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𝑝ଶሺ𝜔ሻ ∝ 𝐵𝑅𝐷𝐹. 𝑐𝑜𝑠𝜃 

(analytical)
𝑝ଵሺ𝜔ሻ ∝ HDR map emission 𝐿 

(tabulated)

𝐹ሺx,𝜔ሻ ൌ න 𝐿 · 𝐵𝑅𝐷𝐹 · 𝑐𝑜𝑠𝜃 · 𝑉 𝑑𝜔ு

This integral is typically estimated using an MIS combination of two techniques for sampling
the incoming direction:
� One is proportional to the HDR map emission and is usually implemented as a

tabulated pdf.
� The second is proportional to the BRDF‐cosine product, and its pdf is given by an

analytical formula.
To apply our MIS compensation, we optimize one of these techniques. Since modifying a
tabulated pdf is simple, we choose to optimize the first technique.



𝑝ଵ 𝜔 ൌ  
1𝑏max 2

𝑓𝐹 െ 𝑝ଶ, 0

𝐹ሺx,𝜔ሻ ൌ න 𝐿 · 𝐵𝑅𝐷𝐹 · 𝑐𝑜𝑠𝜃 · 𝑉 𝑑𝜔ு
OUR APPROACH
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𝑓

𝑝ଶሺ𝜔ሻ ∝ 𝐵𝑅𝐷𝐹. 𝑐𝑜𝑠𝜃 

(analytical)

A new pdf is computed according to our MIS compensation formula, where 𝐹 is the full
integral, 𝑓 is the integrand, and 𝑝ଶ is the fixed second technique. While this solution is close
to optimal, it is not yet practical. It contains the target integral value and depends on both the
surface position 𝑥 and the outgoing direction. It is, therefore, inefficient.



𝑝ଵ 𝜔 ൌ  
1𝑏max 2

𝑓𝐹 െ 𝑝ଶ, 0

Simplifying assumptions:

� Diffuse BRDF
� Average over normals
� Ignore visibility

OUR APPROACH
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𝐿  െ   𝐿ത

3 lines of C++ code

We arrive at a more efficient solution by adding three simplifying assumptions:
� We assume a perfectly diffuse BRDF,
� we average over all surface normals,
� and we ignore the visibility between the surface point and the HDR map.

This gives us a much simpler formula that corresponds to subtracting the average HDR map
pixel value 𝐿ത from each original pixel value 𝐿. This solution is not only efficient, but also trivial
to implement.



OUR APPROACH
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𝑝ଵ 𝜔 ൌ  
1𝑏max 2

𝑓𝐹 െ 𝑝ଶ, 0𝐿  െ   𝐿ത𝑝ଵሺ𝜔ሻ ∝ HDR map emission 𝐿 

Using this formula, the original pdf for sampling the HDR map is simply replaced by a pdf with
much higher contrast. The previously bright parts have now even higher probability of being
sampled and thus compensate for any under‐sampling induced by MIS. Note that, due to this
compensation, the resulting 𝑝ଵ will often be further from the ideal sampling pdf than the
original 𝑝ଵ, when used on its own.



RESULTS: SIMPLE SCENE
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Basic MIS
NMSE 3.38

Our method
NMSE 1.23 (2.75x)
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Let us show and discuss some of the results. Here, we have a simple scene that is lit by an
HDR map that is mostly unoccluded. With our method, we can achieve a 2.75 speedup
compared to the basic MIS combination with the original pdf.



RESULTS: OCCLUSION
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Basic MIS
NMSE 1.05

Our method
NMSE 0.6 (1.75x)
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In this interior scene, which is lit mainly through the window, the illuminating environment
map is heavily occluded. Despite the occlusion, which we assumed to be not present, we can
achieve a 1.75 speedup.



RESULTS: GLOSSINESS
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BRDF glossiness

Our method

off   on off   on off   on off   on off   on off   on

Another assumption during the derivation was that the surface was diffuse. The image above
illustrates what happens when we break this assumption. We render a sphere illuminated by
an HDR map and we modify the sphere’s glossiness as we move to the right. We render half
of the sphere using basic MIS (compensation is off), and half with our solution (compensation
is on). As expected, the improvement provided by our method diminishes with increasing
glossiness, but, and that is important, our method does not make the result worse.

In fact, in all our tests we have never encountered a case where our method would perform
worse than basic MIS.



APPLICATION #2
PATH GUIDING
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Let us now move on to the second application – path guiding.



INDIRECT ILLUMINATION
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𝜔𝜔 n

x

𝜃
𝐿 𝐵𝑅𝐷𝐹

Unlike image‐based lighting that handles direct illumination only, path guiding concerns itself
also with indirect illumination. That is technically the same as the direct one, except it is not
coming from an HDR map, but it is reflected from all surrounding scene surfaces.

The indirect illumination at the point 𝑥 is due to the direct and indirect illumination at all
visible surfaces from that point.



PATH GUIDING [JENSEN 1995, VORBA ET AL. 2014, MÜLLER 
ET AL. 2017]
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𝑝ଶሺ𝑥,𝜔ሻ ∝ 𝐵𝑅𝐷𝐹. 𝑐𝑜𝑠𝜃 
analytical

𝑝ଵሺ𝑥,𝜔ሻ ∝ 𝐿 

learned (tabulated) distribution
Müller et al. [2017]

MIS

𝜔𝜔 n

x

𝜃𝐿 𝐵𝑅𝐷𝐹
𝑝ଵ 𝑥,𝜔 ∝ 𝐿 െ 𝐿ത

MIS compensation

To compute the indirect illumination, ordinary path tracing relies on just one sampling
technique, which is proportional to the BRDF‐cosine product.

Path guiding methods use an additional sampling technique. They sample proportionally to
the illumination coming from the surrounding scene towards a given scene point. To achieve
this, a path guiding method learns an approximation from the previous samples or from some
preprocess. To ensure robust estimation, the two sampling techniques are usually combined
using MIS. And this opens an opportunity to use MIS compensation.

To apply MIS compensation in this setting, we build up on a guided path tracer from the work
of Muller et al. As they use tabulated pdfs to store illumination distribution, we have
essentially the same setup as before in image‐based lighting.



PATH GUIDING: RESULTS
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Müller et al. 
NMSE 3.07

Our method
NMSE 2.22 (1.38x)

Equal – time (150 s)

MIN                                                                   MAX

Now let’s look at the results. First, we have an interior scene that features glossy materials
and is lit only from the outside. We can see that the MIS compensation speeds up the
rendering by a factor of 1.38 compared to the original path guiding approach with basic MIS.

We can also see the distribution of light in false color, as estimated at the middle of the inset
region (left) and our MIS compensated version of that distribution. Blue color corresponds to
the areas that are sampled with low probability, while green and red areas are sampled with
higher probability. The MIS compensation modifies the light distribution to focus more on
already highly sampled regions.



PATH GUIDING: RESULTS
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Müller et al. 
NMSE 3.64

Our method
NMSE 2.27 (1.6x)

Equal – time (150 s)

Here, we have another scene where guiding is used to generate caustics at the bottom of a
pool. MIS compensation speeds up the rendering by a factor of 1.6. As in the previous
application, we did not encounter any fail cases.



CONCLUSION & 
FUTURE WORK
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CONCLUSION
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� MIS is not a solved problem: There is room for improvement!

2x

13x3x

MIS with the balance heuristic has been universally accepted as “the” solution, no questions
asked. The three projects we have discussed in this part of the course demonstrate quite
clearly that there is still a lot of room for improvements.

Firstly, the optimal weights can be negative and hence perform an order of magnitude better
than the balance heuristic. Secondly, the balance heuristic can perform poorly in unexpected
cases, like bidirectional methods. Enhancing it with variance estimates can help with those.
Lastly, significant improvements can be achieved by modifying or designing sampling densities
specifically to reap the most benefits in an MIS setting.

Robust and efficient algorithms, to our current knowledge, cannot be achieved without MIS.
Investing into better MIS weights, sample allocations, or sampling techniques can yield great
rewards.



References 

[Elvira et al. 2015] Víctor Elvira, Luca Martino, David Luengo, and Mónica F. Bugallo. 2015. 

Generalized multiple importance sampling. arXiv:1511.03095. 

[Elvira et al. 2016] Víctor Elvira, Luca Martino, David Luengo, and Mónica F. Bugallo. 2016. Heretical 

multiple importance sampling. IEEE Signal Processing Letters 23, 10 (Oct 2016). 

[Georgiev et al. 2012] Iliyan Georgiev, Jaroslav Křivánek, Stefan Popov, and Philipp Slusallek. 2012b. 

Importance Caching for Complex Illumination. Comput. Graph. Forum (EUROGRAPHICS 2012) 31, 

2pt3 (May 2012), 701–710. 

[Grittmann et al. 2019] Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, Jaroslav Křivánek. 
Variance-Aware Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of 

SIGGRAPH Asia 2019), 38(6): 152:1-152:9, 2019. 

[Havran and Sbert 2014] Vlastimil Havran and Mateu Sbert. 2014. Optimal Combination of 

Techniques in Multiple Importance Sampling. In Proc. VRCAI ’14. ACM, New York, NY, 141–150. 

[Jensen 1995] Henrik Wann Jensen. 1995. Importance Driven Path Tracing using the Photon Map. In 

Rendering Techniques. 

[Karlík et al. 2019] Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, Jaroslav Krivanek. MIS 

compensation: optimizing sampling techniques in multiple importance sampling. ACM Transactions 

on Graphics (Proceedings of SIGGRAPH Asia 2019), 38(6): 151:1-151:12, 2019. 

[Kondapaneni et al. 2019] Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp 
Slusallek, Jaroslav Křivánek. Optimal Multiple Importance Sampling. ACM Transactions on Graphics 

(Proceedings of SIGGRAPH 2019), 38(4): 37:1-37:14, 2019. 

[Lafortune and Willems 1993] Eric P Lafortune and Yves D Willems. 1993. Bi-directional Path Tracing. 

[Lu et al. 2013] H. Lu, R. Pacanowski, and X. Granier. 2013. Second-Order Approximation for Variance 

Reduction in Multiple Importance Sampling. Comput. Graph. Forum (EGSR 2013) 32, 7 (2013), 131–
136. 

[Müller et al. 2017] Thomas Müller, Markus H. Gross, and Jan Novák. 2017. Practical Path Guiding for 

Efficient Light-Transport Simulation. Comput. Graph. Forum 36 (2017), 91–100. 

[Owen and Zhou 2000] Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. 

Amer. Statist. Assoc. 95, 449 (2000), 135–143. 

[Pajot et al. 2011] Anthony Pajot, Loic Barthe, Mathias Paulin, and Pierre Poulin. 2011. 

Representativity for Robust and Adaptive Multiple Importance Sampling. IEEE Transactions on 

Visualization and Computer Graphics 17, 8 (Aug. 2011), 1108–1121. 

[Sbert et al. 2016] Mateu Sbert, Vlastimil Havran, and Laszlo Szirmay-Kalos. 2016. Variance Analysis 

of Multi-sample and One-sample Multiple Importance Sampling. Computer Graphics Forum 35, 7 

(2016), 451–460. 



[Sbert and Havran 2017] Mateu Sbert and Vlastimil Havran. 2017. Adaptive Multiple Importance 

Sampling for General Functions. Vis. Comput. 33, 6-8 (June 2017), 845–855. 

[Veach and Guibas 1995] Eric Veach, Leonidas Guibas. 1995. Optimally Combining Sampling 

Techniques for Monte Carlo Rendering. SIGGRAPH 1995. 

[Veach and Guibas 1995a] Eric Veach and Leonidas Guibas. 1995. Bidirectional Estimators for Light 

Transport. In Photorealistic Rendering Techniques. Springer, 145–167. 

[Vorba et al. 2014] Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. 
On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. 

(Proceedings of SIGGRAPH 2014) 33, 4 (2014). 



Advances in Monte Carlo Rendering: The Legacy of Jaroslav Ǩrivánek
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In this part of the course, we will discuss Markov chain Monte Carlo - an alternative 

approach to the “one rendering algorithm” that can render any given scene 

efficiently. 

1 



Markov chain Monte Carlo [Metropolis et al. 1953], or just MCMC, can be often more 

efficient than the ordinary Monte Carlo. 

 

Consider this scene, which is lit from the outside and the light must travel through 

the window and the blinds into the classroom. On the left side we can see that the 

result of ordinary Monte Carlo is still noisy after 1 hour of rendering. On the right side 

we can see a result of an algorithm based on MCMC which is much cleaner. 

2 



Even though the MCMC algorithms often converge much faster than ordinary Monte 

Carlo methods, they are rarely used in practice. The reason behind this is that MCMC 

often suffers from irregular and unpredictable convergence. 

 

3 



I demonstrate the issue of irregular convergence on this very simple scene that 

contains glossy and specular materials. Here we can see a glossy ring illuminated by a 

small light source, which creates caustics on the floor (red arrow). These caustics are 

reflected in the mirror behind the ring (yellow arrow). 

 

In this scene, an MCMC algorithm oversamples some light transport in the scene 

(white arrow), while it fails to discover other (blue arrow). The irregular convergence 

of MCMC is especially visible in animations where it manifests as flickering (please 

visit the course webpage to view the animation). 

 

 

4 



The goal of our research was therefore to develop a new MCMC algorithm which 

would have more predictable convergence, while keeping MCMC’s ability to converge 

faster than ordinary Monte Carlo in many difficult scenes.  

 

5 



Before we discuss how we have approached this goal, let me give you some brief 

introduction to Markov chain Monte Carlo. 

6 



Markov chain Monte Carlo [Metropolis et al. 1953]  is a general technique for 

generating samples from any unnormalized density 𝐹. To clarify, 𝐹 can be any non-

negative real function and is often called „target function“. The samples can then be 

used in Monte Carlo to estimate mean of a given function. 

 

7 



Given a state space 𝑈 (the square), from which we want to draw samples,  

and the target function 𝐹 (here represented by the white to red gradient), Markov 

chain Monte Carlo algorithm defines a Markov chain, whose states are the desired 

samples. 

 

Two things are important to notice here: 

1. A state of a Markov chain depends on the previous state, so the samples are 

correlated. 

2. More samples are generated in the red area, where the target function has higher 

value. 

8 



Given some conditions, the samples generated by the Markov chain will reach so-

called stationary distribution 𝐹∗ (please refer to [Šik and Křivánek 2018]  for more 

details). This distribution depends on the transition probability 𝑇(𝑢𝑖 → 𝑢𝑖+1) from 

one Markov chain state to the next state. 

 

To ensure the stationary distribution 𝐹∗ is proportional to the desired unnormalized 

density 𝐹, one can apply one of the MCMC algorithms. Probably the most famous 

one is Metropolis-Hastings [Hastings 1970] . 

9 



The Metropolis-Hastings algorithm works as follows: 

1. First it generates a proposal 𝑣 given an initial sample 𝑢0  using a proposal 

distribution 𝑄(𝑢0 → 𝑣) 

2. The proposal is then probabilistically accepted or rejected. The probability is 

based on a ratio of the target function values 
𝐹(𝑣)𝐹(𝑢𝑖)  

 

Note that for non-symmetric proposal distributions 𝑄, ratio of proposal distributions 𝑄(𝑣→𝑢𝑖)𝑄(𝑢𝑖→𝑣) must be also considered. The whole probability is then equal to min 1, 𝐹 𝑣𝐹 𝑢𝑖 𝑄(𝑣→𝑢𝑖)𝑄(𝑢𝑖→𝑣) . 

 

The proposal distribution can be any distribution that depends on the current sample 

and allows the algorithm to sample the whole state space 𝑈. 
 

10 



If the proposal 𝑣 is rejected, a new sample 𝑢1 is equal to the previous sample 𝑢0. 

11 



Another proposal 𝑣 is generated using a proposal distribution that depends on 𝑢1. 

12 



In the case of acceptance, the new sample 𝑢2 is set to be equal to the proposal 𝑣. 
This way we continue, until we have enough samples. 

13 



Let us now discuss how can we utilize MCMC in light transport simulation. 

14 



MCMC was introduced to light transport by Veach and Guibas in their algorithm 

Metropolis light transport. In this case the state space equals the path space and thus 

MCMC generates whole light transport paths. The target function is set to be equal to 

the path contribution function. This means that the paths are generated almost 

according to their contribution to the image. 

 

The almost is important here, since the desired stationary distribution is only reached 

in infinity (e.g. infenetely many samples generated from the Markov chain will have 

the desired distribution). The distribution of the paths converges to the ideal 

distribution, which leads to Monte Carlo estimate with zero-variance. However, in 

practice we never reach the ideal distribution. 

15 



Let us look how the actual algorithm works in the Classroom scene, which we have 

seen in the beginning. 

 

MCMC will randomly generate proposal paths (red) until it finds and accepts one 

contributing path (green). Then it can utilize localized proposal distributions to 

generate more contributing paths (blue). Such localized proposals are often called 

(local) path mutations. Using these mutations we are effectively exploiting the 

original (green) path in order to locally explore an important region of the path space. 

This local exploration is behind the effectiveness of MCMC. 

 

 

 

 

16 



However, excesive local exploration can lead to convergence issues. This can be seen 

in this ring scene, which we have shown previously. 

 

MCMC over-exploits some of the paths here which results in some parts of the image 

to be over-bright (white arrow), while other features are completely missing (blue 

arrow). This is especially visible in animations, where we can see random appearance 

of image features (e.g. the reflected caustics). Please see the course website for the 

animation. 

 

 

 

17 



The cause of this over-exploitaion is insufficient global exploration. It is a failure to 

discover and frequently sample all the important areas in the scene. This is often the 

case with a target function that has high varation, such as the one equal to path 

contribution. 

 

Let us now look again at the simple state space with a target function that has several 

separate modes. In this case the Markov chain may get „stuck“ in one of the modes – 

oversampling it – while not discovering the other modes. This is because the 

discovery of new important samples is usually done using some uninformed global 

mutation/proposal distribution. Proposals generated by such mutations are often 

rejected, since they will very like have a low target function value. 

 

 

 

 

 

 

18 



In the past, most of the research works on MCMC in light transport simulation 

focused on local exploration. They present different mutations that allow effective 

exploitation of many types of paths. However, the major issue of global exploration 

that prevents adoption of MCMC into practice remained unadressed. 

19 



In our research we therefore focused on improving global exploration in Markov 

chain Monte Carlo algorithms. The main goal was to develop new MCMC algorithms 

which exhibit more uniform convergence. We believed that solving this issue would 

allow the algorithms to be adopted into practice. 

20 



In the following slides, I will discuss three of our works that tackle the issue of 

unpredictable MCMC convergence. 

 

21 



22 



In our first research, we have approached the issue of insufficient global exploration 

by utilizing replica exchange and tempering [Swendsen and Wang 1986]. 

 

Replica exchange is a general technique that allows for combination of several 

Markov chains with different target functions. So we can have a chain with one target 

function 𝐹1 equal to path contribution that allows for efficient local exploration. And 

another chain that uses less varying target function 𝐹2. The transition from the more 

varying target function to the smoother one is often called tempering. 

 

 

 

 

23 



Such a less varying target function allows for easier global exploration of the whole 

state space. 

24 



When utilizing more Markov chains, we can mutate them separately:  𝑢0 → 𝑢1 and 𝑡0 → 𝑡1. 

 

 

 

25 



However, to enable benefits of both target functions, we exchange the current 

samples of the corresponding chains: 𝑢2 = 𝑡1 and 𝑡2 = 𝑢1. In this example, the chain 

with the target function 𝐹1 discovered a new mode due to the exchange.  

 

 

26 



After the exchange we continue mutating each chain separately (𝑢2 → 𝑢3  and 𝑡2 → 𝑡3). The exchanges are performed every time after few separate mutations and 

they are accepted  with a probability that depends on the values of their target 

functions: min 1, 𝐹2 𝑢𝑖𝐹1 𝑢𝑖 𝐹1 𝑡𝑖𝐹2 𝑡𝑖 .  
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To ensure that the current samples of two chains are exchanged with high probability, 

it is common to use more chains with increasingly more tempered target functions. 

The exchanges are then performed only between the neighboring chains. In our 

research we also use multiple chains, but we optimize the exchanging of their 

samples. 

 

 

28 



Replica exchange was used before in light transport simulation: 

 

Replica exchange light transport [Kitaoka et al. 2009]  used several different chains, where 

each chain was effective at exploiting a different type of paths. However, none of the chains 

had a target function that could efficiently explore the whole state space and thus global 

exploration was not improved in many cases (e.g. paths corresponding to reflected caustics 

could not be efficiently found nor exploited). 

 

Robust Adaptive Photon Tracing using Photon Path Visibility [Hachisuka and Jensen 2011]  

used replica exchange between two chains, where one of them had a constant target 

function (i.e. it accepted every proposal). However, in this case using replica exchange did not 

bring any advantage compared to using uninformed global mutation for global exploration 

(both had the same probability of being accepted). 

 

 

 

29 



In our research, we have tried to maximize replica exchange potential by focusing on 

both of its key components: Target function tempering and replica exchange moves – 

the exchanging of the chains’ samples. 

30 



Before I discuss how we approached tempering, note that our method is built on top 

of Primary sample space metropolis light transport (PSSMLT) [Kelemen et al. 2002]. 

PSSMLT does not directly mutate paths in the path space. Instead it mutates a sample 

(green point on the left) in so called primary sample space (hypercube) and this 

sample is then utilized as a random vector during path sampling, which constructs the 

path (green path) in the path space. Mutating the sample (green -> blue point) results 

in the path being mutated (green -> blue path). 

 

Such utilization of MCMC is advantageous in many aspects: 

1. It greatly simplifies mutations, since they now occur in hypercube. 

2. We can utilize path sampling techniques from existing algorithms (path tracing, 

bidirectional path tracing etc.) to construct paths from the primary sample space. 

3. If the paths are efficiently sampled by the path sampling techniques, the target 

function will have lower variation (see [Kelemen et al. 2002] for details) 

 

For the above reasons we always utilize primary sample space in our algorithms. 

 

 

31 



In our method, we utilize path sampling techniques from bidirectional path tracing 

[Veach and Guibas 1994]  to construct paths from samples in primary sample space. 

Bidirectional path tracing creates paths by tracing a path from the camera (green) and 

a path from a light source (yellow). These paths are then connected (black dashed 

line). The amount of energy carried through the connection depends on the 

bidirectional scattering distribution function (BSDF) that defines the reflection profile 

of the material. 

 

In the case of glossy materials, the BSDF will have a sharp lobe (red lobes) and will be 

a major source of target function variation. We therefore gradually widen BSDF lobes 

(red -> purple -> blue), which leads to a smoother target function. 
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We wanted to find the best strategy for exchanging the samples of the chains. For 

that purpose, we have tested several strategies. These include commonly used 

strategies from general Markov chain Monte Carlo literature, but also exchange 

moves of our own original design (shown in red). For the description of all these 

techniques, please refer to the doctoral thesis: Global exploration in Markov chain 

Monte Carlo methods for light transport simulation [Šik 2018] 

33 



From synthetic and rendering tests we have determined that the best option is to use 

our own strategy called importance-sampled permutations. This strategy allows to 

permute the current samples of all the chains at once. The permutation is also 

sampled in such a way that it is always accepted and thus it efficiently combines the 

chains. 

 

34 



Now that we have covered the method, I can show you its results. 

 

35 



As I have shown before, the ring scene contains specular and glossy materials that 

lead to poor global exploration of the current methods. 

 

We can see that after 15 minutes of rendering, an MCMC algorithm - Primary sample 

space metropolis light transport (PSSMLT) [Kelemen et al. 2002], failed to sufficiently 

sample some of the reflected caustics (blue arrow), while others are oversampled 

(yellow arrow). 

 

We also show the result of Manifold exploration light transport (MELT) [Jakob and 

Marschner 2012]. Its result seems to be more converged due to its superior local 

exploration mutation, however again some of the transport is oversampled (red 

arrow), while other parts of the scene are under sampled (white arrow). 

 

While the result of our method is quite noisy, it contains most of the specular/glossy 

transport due to its improved global exploration. 
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If we look at the positive-negative difference with the reference (red color = reference 

is brighter, green color = reference is darker), we can see that our method delivers 

more uniform red-green noise than the other methods due to its more regular 

convergence. 

 

Please visit the webpage of this course to see an animation of convergence of 

different methods and a comparison of temporal coherence. These comparisons 

show that our method has more uniform convergence and higher temporal stability. 

However, the results are far from perfect, which motivated our further research. 

 

 

37 



In the second research, we have again focused on improving convergence 

uniformness in the context of Markov chain Monte Carlo. But this time we specialize 

at a specific light transport algorithm: Stochastic progressive photon mapping 

[Hachisuka and Jensen 2009]. 

38 



Let us begin with a quick recapitulation of Stochastic progressive photon mapping 

(SPPM) [Hachisuka and Jensen 2009]. I demonstrate how the algorithm works on the 

schematic view of the ring scene. 

 

The algorithm starts by generating rays from the camera (green) and recording their 

hit points, so called measurement points. If the ray hits highly glossy surface, it 

bounces off it and we continue tracing until we find a diffuse enough surface, where 

the measurement point is stored. 

 

Once it has recorded all the measurement points, it starts tracing paths from light 

sources (yellow). A light path bounces off the surfaces of the scene and on each 

diffuse bounce, it performs density estimate (purple disc). Each measurement point 

that falls into the density estimate radius records the light contribution and 

propagates it back to its origin (camera pixel). 

 

The generation of camera rays and light paths is then interleaved during the 

algorithm. Due to path reuse and spatial regularization inherent to density 

estimation, the algorithm is very effective at handling effects like caustics or even 

reflected caustics. 

39 



However, the algorithm’s efficiency will drop in scenes where it is difficult to find a 

contributing path. For example, if most of the light paths fail to reach the region 

visible by the camera due to occlusion (represented by a brick wall on the slide). 

40 



An example of such a scene is here. All the light is coming from the outside through 

the windows, so most of the light paths never find the interior. Especially the part of 

the scene, which is poorly lit (red inset), is very noisy in the stochastic progressive 

photon mapping (SPPM) result. 

 

41 



To improve the algorithm performance in such scenes, Hachisuka and Jensen has 

utilized Markov chain Monte Carlo to trace the light paths towards the visible region. 

They choose a very simple target function, so called binary visibility. The function is 

simply zero for non-contributing paths and one for all contributing paths. Note that 

camera paths are traced using an ordinary independent sampler. 

42 



By using such a target function they were able to deliver more light paths to the 

visible region and thus significantly improve the results. However, we can see that 

there is much more noise in red inset compared to the blue one. The algorithm still 

distributes more photons to the more lit regions, which leads to non-uniform 

convergence. This is an issue we have addressed in our research. 

 

43 



It can be proven (see our paper [Gruson et al. 2016] for details) that an image has 

uniform relative error if each measurement point 𝐺 has the same probability of 

receiving a non-zero contribution from any light path (under simplifying assumptions, 

such as a diffuse BRDF). 

 

This is achieved if the target function value for a light path contributing to a 

measurement point 𝐺 is equal to 1/P(𝐺), where P 𝐺  is the probability of generating 

a light path by an ordinary Monte Carlo (i.e. uniform sampling of the primary sample 

space). To compute such target function, one can estimate photon (light path vertex) 

density in the scene and then set the target function to be inverse of this estimate. 

44 



In practice the target function is computed as follows: 

1. Subdivide the scene into spatial regions (red grid). 

2. Trace light paths and record how many photons (yellow points) land in each 

region (adjusted for the non-uniform light path tracing probability). 

3. Update target function accordingly (white = maximum target function value, black 

= minimum value). 

4. Return to step 2. and optionally subdivide some regions to improve the accuracy 

of the estimate. 

 

Notice that the target function is set to zero in regions without any measurement 

points (green), since we don’t need to trace light paths there. 
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Beside the main idea of the algorithm there are many fine details that make the 

algorithm improve upon the previous ones. To get more smoother target function in 

large spatial regions, the whole target function is multiplied by the inverse squared 

distance to the camera. This results in generating more photons closer to the camera, 

where they matter more. 

 

Since the resulting target function can be quite spiky and thus lead to poor global 

exploration, we have utilized replica exchange as in the previous research. The 

algorithm uses four Markov chains with different target functions: 

1. The main target function based on photon density 

2. Target function equal to the inverse squared distance to the camera 

3. Binary visibility target function (the original target function from [Hachisuka and 

Jensen 2011]) 

4. Uniform target function (Always equal to 1, always accepted) 

Note that the first 3 target functions are set to zero for non-contributing paths. 

 

46 



Now that we have covered the method, I can show you its results. 

 

47 



As you can clearly see our method significantly reduces noise compared to the 

previous methods even in the dimly lit area of the scene (red inset). 

48 



In this equal-time (30 min) comparison we show that our method has not only lower 

relative image error compared to the previous method [Hachisuka and Jensen 2011], 

but the error is also more uniform in the whole image. 

49 



Unfortunately, since our method is based on stochastic progressive photon mapping, 

it can‘t efficiently handle many types of paths (e.g. glossy-glossy transport). On the 

slide you can see a scene containing glossy materials. After 1 hour of rendering with 

our method, the scene is still very noisy. Note that the previous method by Hachisuka 

and Jensen would not deal with this scene any better. 

 

50 



In the last research, I discuss here, we have therefore focused on developing a more 

robust light transport algorithm, that would utilize Markov chain Monte Carlo to 

handle all types of scenes, while not exhibiting any convergence issues. 

 

51 



One of the light transport algorithms that can robustly handle many types of 

transport paths is vertex connection and merging [Geoergiev et al. 2012/ Hachisuka 

et al. 2012]. Vertex connection and merging (VCM) is an ordinary Monte Carlo 

algorithm, which was already presented in this course and thus I will just quickly 

recapitulate its description. 

 

I demonstrate how it works on the schematic view of the „tray“ scene, which caused 

issues to our previous method. VCM creates the paths by combining a path from the 

camera (green) and a path from a light source (yellow). 

52 



It combines the paths using connections, where any of the light path vertices can be 

connected to any camera path vertex. One such connection (black dashed line) is 

shown on the slide. 

53 



It can also combine the paths using density estimation, in this case called merging. 

Note that due to the inherit spatial regularization and path reuse, merging is effective 

at handling caustics and reflected caustics. However, unlike the algorithms based on 

SPPM, VCM allows merging at any vertex.  This increases robustness in the case of 

glossy-glossy transport. 

54 



However, like SPPM, VCM becomes quite inefficient in scenes, where it is difficult to 

find a contributing path. For example, if most of the light paths fail to reach the 

region visible by the camera due to an occlusion (represented by a brick wall on the 

slide). 

55 



In our research we combine vertex connection and merging with MCMC in one robust 

algorithm. MCMC will enable efficient exploitation of paths, which will lead to 

generation of more contributing paths. While VCM techniques (connections and 

merging) will effectively handle glossy/specular transport. 

56 



As in the previous method we built on top of Primary sample space Metropolis light 

transport [Kelemen et al. 2002], but here we utilize all the techniques of VCM 

(merging and connections) and thus the target function 𝐹 equal to path contribution 

has lower variation in scenes with specular and glossy transport. This will allow 

MCMC to more easily explore the whole state space and significantly reduce the 

issues connected to poor global exploration. 
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To further improve global exploration of our method, we apply replica exchange as in 

the previous methods. However, here it is sufficient to only use two target functions: 

1. The main target function equal to path contribution – for better local exploration 

(exploitation). 

2. The binary visibility target function that is non-zero for all contributing paths  

[Hachisuka and Jensen 2011]. 
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We can utilize MCMC to guide both light paths from the light sources (yellow) and 

camera paths from the camera (green). However, we have found out that using 

independent stratified sampler for camera paths leads to better results. And thus we 

only use MCMC to guide paths from light sources to ensure effective exploitation in 

many difficult scenes. 
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Now that we have covered the method, I can show you its results. 
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We demonstrate the results of our method in this Kitchen scene, which contains 

glossy and specular materials on the kitchen counter. The scene is only lit from the 

outside by the sun and sky. The light therefore needs to go through a window before 

it reaches the visible region. 

 

The result of vertex connection and merging (VCM) [Georgiev et al. 2012/Hachisuka 

et al. 2012] is very noisy even after 1 hour of rendering. This is due to the algorithm’s 
inability to deliver enough light paths to visible region. 

 

While the MCMC algorithm Manifold exploration light transport (MELT) [Jakob and 

Marschner 2012] delivers more cleaner result due to local exploration, the resulting 

image contains many artifacts (blue and yellow arrows). These are caused by the 

algorithm’s poor global exploration. 

 

We can see that the result of our method only introduces some high-frequency noise 

comparable to ordinary Monte Carlo due to better global exploration. The noise level 

is also much lower compared to vertex connection and merging due to the ability of 

local exploration. Our algorithm has also better temporal coherence compared to 

previous MCMC methods. (Please visit the course webpage to view the animation) 
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During our research we believed that improving global exploration and removing 

convergence issues of MCMC algorithms will lead to their adotoption in practice. So 

let us quickly look if that really happened. 
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To this day, we are aware of two MCMC-based light transport algorithms that are 

being used to render the most difficult scenes. Both of these solutions are similar to 

the last described algorithm. Since we are the authors of the second practical 

solution, I will shortly talk about it. 
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MCMC is used in the Corona renderer (www.corona-renderer.com) to efficiently 

render caustics and their reflections. While the algorithm is based on our 

combination of vertex connection merging and MCMC, it differs in some way. 

 

Our goal was to create a solver that would complement the main algorithm (path 

tracing) in difficult scenes while having easy setup and minimum overhead. To 

achieve this goal, we got an inspiration from Lightweight photon mapping [Grittmann 

et al. 2018] and we use only some of VCM techniques and only in places where they 

are necessary (e.g. where path tracing converges too slowly). We also automatically 

set number of light paths and all other parameters of VCM.  

 

Furthermore, we have refined the MCMC target function to even better distribute the 

light paths. It was also necessary to devise an adaptive framework for selecting a light 

source during emission of light paths, since the real scenes can have thousands of 

light sources and not all of them generate difficult transport (e.g. caustics). 

 

We refer the readers to our paper Implementing One-Click Caustics in Corona 

Renderer [Šik and Křivánek 2019]  for more details. 
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Here we show some results from the Corona renderer and its caustics solver. Before 

the solver was implemented, users had to use fakes to render glass in practical scenes 

(left image). After enabling the caustic solver, realistic caustics are computed using 

MCMC algorithm (right image), while the rendering is less than 2 times slower. 
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The users can create scenes that contain both reflective and refractive caustics and  

the algorithm has enough temporal stability to enable rendering of animations. 

(Please visit the course webpage to view the animation) 
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For the readers interested about the recent development of MCMC techniques in 

light transport simulation, I recommend reading our survey, which covers most of 

these methods. The survey also points out directions for improving the existing 

MCMC algorithms. As for the newest development, I also recommend reading the 

papers shown on the slide. 
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While our work has significantly improved global exploration, the issue is far from 

being solved. One of the biggest issues is the current use of an uninformed mutation 

to explore the whole state space. We believe that designing more informed “global” 
mutations could further improve global exploration. These mutations could learn the 

necessary information from some preprocess or during rendering from previous 

samples (utilizing so called adaptive Markov chain Monte Carlo [Haario et al. 2001]). 

There is a certain similarity with path guiding and thus an interesting avenue is the 

possible combination of path guiding and Markov chain Monte Carlo. 
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