
RTfact
Concepts for

Generic Ray Tracing

Iliyan Georgiev

Computer Graphics Group
Saarland University

66123 Saarbrücken, Germany

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science at the
Faculty of Natural Sciences and Technology I,
Department of Computer Science at Saarland University

Supervisor:
Prof. Dr.-Ing. Philipp Slusallek
Saarland University, Saarbrücken, Germany
DFKI Saarbrücken, Germany

Reviewers:
Prof. Dr.-Ing. Philipp Slusallek
Saarland University, Saarbrücken, Germany
DFKI Saarbrücken, Germany

Jun.-Prof. Dr. Sebastian Hack
Saarland University, Saarbrücken, Germany

Thesis submitted on:
July 31, 2008

Revision 1, July 31st, 2008

c© 2008 Iliyan Georgiev. All rights reserved.

Abstract

For a long time now, interactive 3D graphics has been dominated by ras-
terization algorithms. However, thanks to more than a decade of research
and the fast evolution of computer hardware, ray tracing has recently achie-
ved real-time performance. Thus, it is likely that ray tracing will become a
commodity choice for adding complex lighting effects to real-time rendering
engines.

Nonetheless, interactive ray tracing research has been mostly concen-
trated on few specific combinations of algorithms and data structures.

In this thesis we present RTfact – an attempt to bring the differ-
ent aspects of ray tracing together in a component oriented, generic, and
portable way, without sacrificing the performance benefits of hand-tuned
single-purpose implementations. RTfact is a template library consisting of
packet-centric components combined into an efficient ray tracing framework.
Our generic design approach with loosely coupled algorithms and data struc-
tures allows for seamless integration of new algorithms with maximum run-
time performance, while leveraging as much of the existing code base as
possible.

The SIMD abstraction layer of RTfact enables easy porting to new
microprocessor architectures with wider SIMD instruction sets without the
need of modifying existing code. The efficiency of C++ templates allows us
to achieve fine component granularity and to incorporate a flexible physically-
based surface shading model, which enables exploitation of ray coherence.
As a proof of concept we apply the library to a variety of rendering tasks and
demonstrate its ability to deliver performance equal to existing optimized
implementations.

iii

iv

Acknowledgements

First of all, I would like to thank my thesis supervisor Prof. Dr. Philipp
Slusallek for awakening my passion for computer graphics and for giving me
the opportunity to work in a demanding and vibrant environment. Special
thanks go to Johannes Günther for the many worthwhile discussions and
Stefan Popov for motivating my work and giving me directions during the
development of the project.

I would like to thank my family for their love and support, and espe-
cially my girlfriend for the many weekends we had to stay at home.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Overview . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Basic Models . 6

2.1.1 Camera . 6

2.1.2 Geometry . 6

2.1.3 Shading . 7

2.2 Rendering Algorithms . 7

2.2.1 Rasterization . 8

2.2.2 Ray Tracing . 9

2.2.3 Acceleration Structures for Ray Tracing 10

2.3 Global Illumination with Ray Tracing 13

2.4 Interactive Ray Tracing . 15

2.4.1 Packet Ray Tracing 16

2.4.2 Frustum Culling for Packet Ray Tracing 16

2.4.3 Interactive Global Illumination 17

3 Ray Tracing Systems 19

3.1 Basic Infrastructure . 19

3.2 Offline Ray Tracing Systems 20

3.2.1 PBRT . 21

3.3 Interactive Ray Tracing Systems 23

3.3.1 OpenRT . 23

3.3.2 Manta . 26

3.3.3 RTSL . 29

vii

viii CONTENTS

4 Design Considerations 31
4.1 Flexibility Requirements . 31
4.2 Performance Requirements 32

4.2.1 Parallelism . 32
4.2.2 Memory Bandwidth and Cache Utilization 33

4.3 Flexibility vs. Performance 33
4.4 Object-Oriented Design . 34
4.5 Domain-Specific Languages 35
4.6 Generic Programming . 36

4.6.1 Class and Function Templates 36
4.6.2 Concepts and Models 38

5 Software Architecture 39
5.1 SIMD Primitives . 40

5.1.1 Ray Packets . 44
5.2 Ray Tracing Components . 45

5.2.1 Primitives and Acceleration Structures 45
5.2.2 Intersectors . 47

5.3 Scene Management and Acceleration Structure Building . . . 49
5.4 Rendering Components . 49

5.4.1 Shading Model . 49
5.4.2 Texturing . 52

5.5 Rendering Pipelines . 53

6 Applications 55
6.1 Surface Ray Tracing . 55

6.1.1 Performance . 57
6.1.2 Shading Model Improvements 59

6.2 Point-Based Ray Tracing . 59
6.3 Direct Volume Rendering . 59
6.4 A Note on Parallelism . 60

7 Conclusions 63
7.1 Limitations . 63
7.2 Future Work . 64

Bibliography 67

Chapter 1

Introduction

Since the early development of computers there has been growing interest
in interactive visualization of three-dimensional environments and simula-
tion of natural lighting phenomena. In the last two decades interactive
graphics technology has become a commodity – modern desktop micropro-
cessors have enough computational power to enable real-time visualization
of complex models. On the other hand, tremendous advances in photoreal-
istic rendering have made it possible to synthesize images indistinguishable
from photographs. As the demands for visualization have been increasing,
research has focused in two areas – interactivity and realism.

Interactive visualization has been relying mostly on rasterization al-
gorithms, where scenes are composed of triangles, which are rendered and
shaded independently from each other. This model is suitable for pipeline-
based implementations in hardware, and current dedicated graphics cards
can rasterize many millions of triangles per second. Using this model, how-
ever, it is difficult to produce photo-realistic images. As each triangle is
processed individually, only local information about geometry and illumi-
nation is available in one rendering pass. As a result, even the most basic
optical effects come at a big price, requiring multiple rendering passes, while
still compromising correctness. This is why rasterization has been mostly
used in entertainment industry, where interactivity is more important than
visual realism.

On the other hand, photorealistic rendering has been relying on algo-
rithms based on ray tracing. Ray tracing determines the mutual visibility
between two points and is a easy to use tool for physically correct simulations
of light propagation in virtual environments. Ray tracing-based algorithms
can capture illumination effects like soft shadows, reflection and refraction,
as well as full global illumination.

However, ray tracing-based light simulation algorithms have been also
famous for their high computational requirements – many ray visibility sam-
ples are needed for correct estimation of more complex effects like indirect

1

2 CHAPTER 1. INTRODUCTION

illumination, glossy reflections, and caustics. That is why ray tracing has
been used mostly for offline rendering, where image quality is crucial and
longer rendering times are more tolerable. Still, companies in movie industry
have only recently started producing full-length movies and special effects
using ray tracing based rendering techniques.

It was not until recently that ray tracing achieved real-time perfor-
mance. Tremendous advances in hardware and algorithms made it possible
to visualize complex scenes with correct shadows and secondary effects on
a single commodity PC at real-time frame rates. Coherent ray tracing algo-
rithms, making best use of hardware resources, have shown that interactive
and physically correct lighting simulation is achievable on desktop comput-
ers. Companies in airplane and automotive industries are already using
interactive ray tracing systems for lighting simulation and visualization.

Since the necessary computing power became available, interactive ray
tracing research has focused on performance on desktop machines. While
offline systems are usually designed to be flexible, some interactive systems
had to compromise flexibility [46, 6], remaining fast only in specific config-
urations of algorithms and data structures. Others have provided certain
degree of functional freedom exposed through custom application program-
ming interfaces (APIs) [11, 5], but have relied on fixed rendering pipelines
and strong assumptions, and additionally suffered from the run-time over-
head of dynamic polymorphism.

In this thesis, we describe the architecture of RTfact – a generic, flex-
ible, and high-performance library for interactive ray tracing. RTfact does
not aim at delivering a self-contained rendering system, but at creating a
flexible and extensible environment for testing and implementing custom ray
tracing-based solutions.

Our solution is based on the observation that most of the flexibility
required from a ray tracing framework is needed at design time and not
necessarily at run-time. Thus, our main goal is to provide an highly flexible
infrastructure which allows the user to pay a performance price only when
the provided flexibility is really needed at run time. Generally, we try to
combine the flexibility of an off-line rendering system with the performance
of state-of-the-art ray tracing algorithms and take full advantage of the
parallelism supported in modern hardware. We separate algorithms from
data structures and ray tracing from rendering, and redefine the design of a
ray tracing system in the terms of generic programming. This allows us to
simultaneously achieve higher reusability, composability, and efficiency.

1.1 Overview

The versatility of ray tracing as a visibility sampling technique in combi-
nation with modern hardware and coherent ray traversal and intersection

1.2. THESIS OUTLINE 3

algorithms impose certain challenges on the design of a real-time rendering
system. These include the choice of supported functionality and the ease
of adapting the rendering system to the particular needs of applications.
Certain applications, for example, might need to combine different acceler-
ation structures, traversed with ray packets of different size, and use them
in different contexts (e.g. for rendering, collision detection, object picking).
Thus, a modern ray tracing framework should be flexible enough to allow
such freedom and to also deliver the best possible performance for each
possible configuration of algorithms and data structures.

RTfact is inspired by the need of a modern multi-purpose real-time
ray tracer prototyping library, which provides maximum performance on the
latest generation of CPUs without compromising flexibility. We do not try
to give a one-size-fits-all solution, but take a more general design approach
instead. We create multiple levels of abstractions for both algorithms and
data structures. Starting from basic data types for data parallel computa-
tion, we incrementally augment the library with functionality in the form
of generic composable components. We do not fix a single pipeline, but
instead provide the building blocks and a framework for combining them.
Employing the full power of C++ templates, it is then possible within our
framework, for example, to implement a single generic triangle intersec-
tion algorithm that handles ray packets of different size, nature (primary,
shadow, secondary, etc.), and common origin properties. We let the compiler
generate optimized code for each specific ray packet size and type used.

Compile-time dependency resolution and template instantiation not
only enable low-level optimization by modern compilers, but also allow spe-
cial case code to be directly embedded into a generic algorithm, without
the need of virtual functions or other complex control flow. Thus, no un-
necessary run-time overhead is imposed. The library focuses on flexibility
and single-thread throughput, and its thread-aware design is orthogonal to
higher level parallelization schemes and APIs, which can be easily imple-
mented on top as layers between the core library and user applications.

RTfact employs a physically-based shading model, which decouples
surface shading from visibility computations and light integration. This
separation facilitates code reuse and enables better exploitation of ray co-
herence.

1.2 Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2 we will introduce the problem of light transport and the
how two different algorithms try to solve it, in particular rasterization and
ray tracing. We will discuss how to speed-up ray tracing with acceleration
structures and will see how ray tracing can be used for global illumination

4 CHAPTER 1. INTRODUCTION

simulations. Finally, we will overview the state of the art algorithms for
real-time ray tracing and interactive global illumination.

Chapter 3 introduces the basic infrastructure of a ray tracer. We will
give an overview of existing offline and interactive ray tracing systems and
discuss the advantages and disadvantages of each.

Based on the observations made in Chapter 3, we set the specific
requirements for our real-time ray tracing library in Chapter 4. We then
evaluate the possible approaches for designing the library, and finally we
introduce the concepts of generic programming.

Chapter 5 presents the main contribution of this thesis – the design
of our generic real-time ray tracing library. We will first present the basic
software architecture and then we describe the individual components of the
library.

In Chapter 6, we demonstrate how the components of RTfact can
be composed together to build up custom ray tracing solutions, by giving
examples for three different visualization tasks. Finally, we compare the
achieved performance to other interactive ray tracing systems.

Chapter 7 summarizes the contributions of the thesis along with a
final discussion and directions for future work.

Chapter 2

Background

In computer graphics, rendering is the process of producing a two-dimensional
image of a virtual thee-dimensional scene from a camera perspective. To be
able to do this, one must first understand the nature of light.

Light is measured in radiance – the energy per unit time which passes
through a unit area orthogonal to the direction of the flow from a unit solid
angle, or Watt

m2sr
.

In the real world, light starts its journey from light sources, bounces
at objects and continues traveling until absorption. If we can reproduce in
a computer simulation the path followed from a light source to our eyes, we
would be able to determine what our eye sees. How light scatters in the
scene is described by the fundamental rendering equation [18]:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω
fr(ωi, x, ωo)Li(x, ωi)cosθi dωi. (2.1)

This equation models the physics of light and states that the radiance flowing
from some surface point x in direction ωo equals the radiance emitted by
this surface at that point and direction plus the radiance that comes from
all other directions and is reflected in the direction of interest. The term
Li(x, ωi) yields the incoming radiance from direction ωi and is weighted by
fr(ωi, x, ωo), which specifies the reflectance properties of the surface at point
x. The term cosθi accounts for the orientation of the surface with respect
to the direction of the incoming light.

In Equation 2.1, the incoming radiance Li(x, ωi) is actually equal to
the outgoing radiance Lo(y,−ωi) at another surface point. It can be ob-
tained using the so-called ray tracing operator h(x, ωi), which yields the first
point visible from x in direction ωi, i.e. y = h(x, ωi). Thus, Equation 2.1
can be reformulated as:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω
fr(ωi, x, ωo)Lo(h(x, ωi),−ωi)cosθi dωi. (2.2)

5

6 CHAPTER 2. BACKGROUND

image plane pinhole

(a) (b)

Figure 2.1: (a) The pinhole camera lets the light pass only though an infinitely small
point. Thus, exactly one ray of light contributes to a single point on the image plane.
(b) A three-dimensional solid object is usually represented by a mesh of geometric
primitives or patches, which can be triangles, quads, or higher-order surfaces.

2.1 Basic Models

Simulating the light propagation in a synthetic scene and capturing an im-
age requires modeling the basic components participating in the real-world
process. Three basic models can be distinguished in a digital renderer –
camera, geometry, and shading.

2.1.1 Camera

Recording an image in the real world requires a device that consists of tiny
sensors which detect incoming radiance, or irradiance, such as cameras or
the retina of the human eye. In a virtual environment, a virtual camera
model is used whose sensors are the pixels of the image.

The most widely used camera model in computer graphics is the simple
pinhole camera (see Figure 2.1.a)). The pinhole camera consists of box with
an image plane on the back and a hole in the front, which lets light enter the
box and fall onto the image plane. If the hole is infinitely small, a single light
ray falls onto a single point on the image plane. In practice, an equivalent
and more convenient camera model is used, where the image plane is in the
front, and all incoming light concentrates in a single point on the back of
the camera.

2.1.2 Geometry

Most of the real world scenes can be represented by the surfaces of their
objects. A single object it usually given as a mesh of flat geometric primitives
or higher-order surfaces (see Figure 2.1.b). Usually, surfaces are represented
as triangle meshes, since the triangle is the most basic space filling primitive.

2.2. RENDERING ALGORITHMS 7

Volumetric data acquired by computer tomography scanners or natu-
ral phenomena simulations are usually given in the form of three-dimensional
grids.

2.1.3 Shading

A very important aspect of a digital image is the appearance of the objects,
which is given by the term fr(ωi, x, ωo) in Equation 2.2. Depending on the
formulation of the equation, this term is called bidirectional reflectance dis-
tribution function (BRDF), or bidirectional scattering distribution function
(BSDF), which accounts for the reflection and transmission of light that
happens on the surfaces of objects. The BRDF and BSDF are probabil-
ity distribution functions giving the probability that a light particle coming
from direction ωi to a surface point x will be reflected or refracted in direc-
tion ωo. In general, light scattering is wavelength dependent, but a common
approach in computer graphics is to distinguish between three main chan-
nels – red, green, and blue (RGB). The way of specifying the appearance of
objects is called reflectance model, or shading model.

Many analytical shading models exist in computer graphics, most of
which provide a number of parameters to set the desired properties of a sur-
face. The most widely used is the Phong illumination model [29]. It encodes
reflection properties as a combination of ambient light, diffuse reflection of
rough materials, and specular reflection of shiny surfaces.

2.2 Rendering Algorithms

In order to generate an image with a computer, we place our camera some-
where in the scene and then we have to compute the radiance falling onto its
sensors, or pixels. Discarding any participating media, this is usually done
by finding the closest visible surface through each pixel and estimating its
appearance as seen from the camera.

There are two general approaches of solving the rendering equation
and performing visibility computations: rasterization algorithms and ray
tracing algorithms. In order to find the closest visible surface from each
pixel, rasterization algorithms perform forward projection of geometry onto
the image plane, while ray tracing algorithms perform backward projection
of rays onto the scene from the camera center through the pixels. The two
approaches are somewhat dual to each other, however they have different
properties. Rasterization is best known for its low-cost and efficient hard-
ware implementations, but has difficulties in simulating most optical effects
accurately. On the other hand, ray tracing is known for its ability to produce
high quality images, but also for its poor performance.

8 CHAPTER 2. BACKGROUND

Figure 2.2: Triangle rasterization algorithms compute visibility by performing forward
projections – each triangle is projected onto the image plane with respect to the view
point. The covered pixels are shaded and their colors and corresponding depth values
are stored in buffers. The color buffer of a pixel can be overwritten by a pixel with a
smaller depth value.

2.2.1 Rasterization

The idea behind rasterization is to project geometric primitives indepen-
dently onto the image plane and to shade the covered pixels (see Figure 2.2).
For correct visibility determination the distance from the camera to the
closest projected point for each pixel is kept in a depth buffer. A depth
test ensures that after all triangles have been rasterized, each pixel will con-
tain the color of the closest primitive. This scheme can be very fast but
also inefficient, because newly rasterized primitives can overwrite previously
computed pixels.

A single-pass rasterization algorithm can only solve a simplified version
of the rendering equation:

Lo(x, ωo) =
∑
l∈C

fr(ωi, x, ωo)L(x, l)cosθl,

where in l is a point light source in the set of all point light sources C in
the scene, and the term L(x, l) is the contribution of light l to point x
discarding occlusion. This model works for simulating direct illumination
from point light sources but because no global knowledge about the scene
exists, soft shadows from real area light sources cannot be captured correctly,
and even simple hard shadows from point light sources cannot be computed
in a single pass. Programmable shaders have enabled multi-pass methods
to be developed, which solve the hard shadows problem and try to simulate

2.2. RENDERING ALGORITHMS 9

Figure 2.3: Ray tracing performs forward projections – rays are traced through each
pixel on the image plane to find the closest visible object, and only the visible geometry
is shaded.

secondary effects like reflection and refraction, but still compromise their
correctness. Such methods also do not scale well, because by design in one
rasterization pass the whole geometry is processed.

Nevertheless, triangle rasterization is the most widely used method for
real-time rendering, because it can robustly handle dynamic geometry and
can be efficiently implemented in highly parallel hardware pipelines on dedi-
cated graphics processing units (GPUs). During the past two decades GPUs
have been developing at high rates, with constantly increasing performance
and programmability.

2.2.2 Ray Tracing

Ray tracing [2, 14], determines the closest visible surface through each pixel
by shooting rays from the camera (see Figure 2.3). In contrast to rasteriza-
tion, visibility computations are not performed with respect to a plane, thus
ray tracing can be used to sample the whole light path space. This way,
light transport can be simulated directly based on the rendering equation.

When talking about ray tracing, one usually refers to the classic recur-
sive ray tracing algorithm, called Whitted-style ray tracing [52]. In Whitted
ray tracing, a primary ray is first traced from the camera through each pixel.
If a non-perfect specular object is hit, a shadow ray is shot toward each light
source in the scene, in order to estimate its visibility and contribution to the
hit point. If the BSDF of the material has perfect specular parts, secondary
rays are recursively shot to account for light that is reflected or refracted

10 CHAPTER 2. BACKGROUND

glass

primary rays

refraction ray

re�ection rays

shadow raysmirror

light sources

Figure 2.4: Whitted-style ray tracing. Reflection and refraction rays are recursively
shot from specular surfaces, while direct illumination is estimated by tracing shadow
rays toward light sources.

from the surface (see Figure 2.4). To correctly estimate light reflected back
along the primary ray, the BSDF is evaluated for all shadow and secondary
rays.

Ray tracing can handle different kinds of geometry, reflection, and
camera models, whereas rasterization is mainly limited to triangles, local
illumination and the pinhole camera model. Furthermore, in Whitted ray
tracing invisible objects are never touched and pixel-correct shadows, re-
flection, and refraction are naturally captures. More complex effects like
indirect illumination and caustics can be also captured in a similar way.
In general, ray tracing can be used for stochastically solving the rendering
equation, thereby computing the full global illumination in a scene.

2.2.3 Acceleration Structures for Ray Tracing

When recursively solving the rendering equation, the number of rays need
to be cast grows exponentially with the number of reflective surfaces. A
näıve ray casting algorithm would determine the closest intersection along
a ray by simply testing it with all objects in the scene. This would result
in a linear complexity with the number of primitives, which would be quite
inefficient, except for very simple scenes.

The speed of ray casting is crucial for the performance of every phys-
ically based rendering algorithm. In order to reduce the complexity of ray

2.2. RENDERING ALGORITHMS 11

(a) (b)

Figure 2.5: Acceleration structures for ray tracing. (a) Uniform grids divide space
equally in each dimension. Rays traverse the cells sequentially and intersections are
searched only in the touched cells. (b) Kd-trees can divide space according to the
geometry distribution. Large empty spaces are quickly skipped and intersections are
searched for only in the leaf nodes.

casting, fine-grained spatial index structures are usually used, which sort the
space or the scene geometry into cells, which are then used to prevent inter-
secting geometry far away from the ray. These structures replace the costly
primitive intersection with cheaper traversal, which usually has logarithmic
asymptotic cost in the number of geometric primitives and can substantially
increase performance. The cells in such structures contain references to the
encompassed geometry and are traversed in front to back order with respect
to the ray. Traversing essentially enumerates geometry along and close to
the ray, which makes ray tracing output sensitive.

There are two major classes of acceleration structures for ray tracing
– space partitioning structures and bounding volume hierarchies.

2.2.3.1 Space Partitioning Structures

Space partitioning structures divide space into disjunctive subspaces. Since
the cells of such structures do not overlap, the cell traversal order can be
uniquely determined for each ray and thus as soon as an intersection is
found, further traversal can be pruned, i.e. early ray termination can be
performed. However, a side effect of dividing space is that geometry may
overlap more than one cell and multiple references to the same primitives
have to be kept. Furthermore, there may be cells containing no geometry,
which can introduce redundant ray traversal steps.

Regular Grids

Regular grids [1] are the most basic form of space partitioning, as they split
space uniformly in each dimension (see Figure 2.5.a). Such grids can be
built in linear time with respect to the number of primitives, but do not

12 CHAPTER 2. BACKGROUND

adapt well to non-uniformly distributed geometry. Grids are mainly used in
volume ray tracing, where data samples are usually uniformly distributed,
but have been also showed to perform well for surface ray tracing of dynamic
scenes [49].

Octrees

Octrees [14] are hierarchical space partitioning structures, where each axis-
aligned voxel has either 8 children (i.e. it is split in two along each axis), or
no children if it is empty. Octrees can adapt to the distribution of geometry
and thus can be more efficient for non-uniform distributions than regular
grids. The most widely used are regular octrees, where cells are uniformly
split, and can be traversed without a stack. However, octrees are more
expensive to build than regular grids and cannot adapt to geometry as well
as kd-trees or bounding volume hierarchies.

Kd-trees

Kd-trees are binary space partitioning (BSP) trees [17, 42], which recursively
divide space in two subspaces using axis-aligned planes (see Figure 2.5.b).
Internal tree nodes store information about the split axis, while leaves ref-
erence the encompassed geometry. Kd-trees can adapt well to the geometry
distribution and, as being binary search trees, they have logarithmic traver-
sal complexity. Kd-trees are the most widely used acceleration structures for
ray tracing, because they provide a good trade-off between build time and
traversal cost. A drawback is that an exact upper bound of the size of the
structure cannot be predicted before building, because leaves can contain
empty space.

2.2.3.2 Bounding Volume Hierarchies

The bounding volume hierarchies (BVHs) [35], in contrast to space parti-
tioning structures, partition geometry into disjunctive subsets. These sub-
sets are structured in a tree, whose internal nodes store the bounds of their
two children, and whose leaves contain geometry. The bounds can be arbi-
trary, but usually axis-aligned boxes are used. Since geometry is bounded,
and not space, BVHs are usually smaller and faster to build than kd-trees.
Also, each primitive in the scene is contained in exactly one node. However,
traversing a BVH with a single ray can be more costly than traversing a
kd-tree, because cells can overlap and early ray termination is not always
possible. However, a key advantage of BVH’s is that the topology of the
structure does not need to change when geometry changes, which makes
them more flexible in handling dynamic environments.

2.3. GLOBAL ILLUMINATION WITH RAY TRACING 13

(a) (b)

Figure 2.6: (a) The idea of Monte Carlo path tracing is to stochastically find paths
which bring light to the camera. Images can be quite noisy unless many paths are traced
per pixel. (b) In instant radiosity, as paths from light sources are traced and stored as
virtual point light sources (VPLs). During rendering, these light sources are used to
illuminate the surfaces visible from the camera. Images do not suffer from noise, but
illumination artifacts may appear if a small numbers of VPLs is used to approximate
indirect illumination.

The quality of the acceleration structure is crucial to the performance
of ray tracing. Structures which tightly bound geometry allow efficient skip-
ping of empty space and can drastically reduce the number of primitives to
be tested for intersection. Algorithms for building hierarchical structures
like kd-trees and BVHs use cost models, such as the surface area heuris-
tic (SAH). SAH optimizes the quality of the structure by minimizing the
expected cost for traversing a random ray through the structure.

2.3 Global Illumination with Ray Tracing

Producing realistic images requires physical simulation of light transport,
which means capturing all possible lighting effects in the scene, such as
reflections, refractions, indirect illumination, or volumetric scattering. Such
algorithms, called global illumination algorithms try to solve Equation 2.2
in order simulate the global light transport between all mutually visible
surfaces in a virtual environment.

Current state of the art global illumination algorithms rely on Monte
Carlo integration methods [12], which estimate the values of complex inte-
grals by evaluating the integrand at discrete sample locations and averaging
the results. Pure Monte Carlo methods compute unbiased solutions and
robustly handle discontinuities in the integrand, which is the case in the
rendering equation.

In the context of ray tracing and the rendering equation, Monte Carlo

14 CHAPTER 2. BACKGROUND

global illumination algorithms sample light paths and evaluate the radiance
they bring to the camera. However, plausible approximations of the light
field in the scene may require many paths to be evaluated. The main prob-
lem of Monte Carlo integration is the rapid drop of convergence with the
increase of dimensionality, and undersampling can result in high variance or
systematic error.

Path tracing [18] solves the rendering equation by stochastically trac-
ing light paths from the camera. A path terminates when a light source is
reached or when the path contribution reaches zero. A similar approach,
called light tracing, estimates light transport starting from light sources.
These algorithms produce unbiased solutions and can capture complex il-
lumination effects but can be very noisy even with a large number of path
samples. Because the probability of reaching a light source from every point
in the scene is very low, only a small number of paths terminate by actually
contributing some light to the camera (see Figure 2.6.a).

Bidirectional path tracing [21, 44] is a generalization of light tracing
and path tracing, where paths are simultaneously traced from the camera
and from the light sources. The vertices of camera and light source paths
are connected and estimators for the resulting camera-light paths are built.
This way, relevant paths which transport light from a light source to the
camera are more easily found, resulting in less noisy solutions. However,
variance is still a major problem, as no illumination coherence is exploited.

Modern Monte Carlo global illumination techniques exploit illumina-
tion coherence by performing the computations for one frame in two passes.
First, particles from the light sources are traced and stored on surfaces,
thereby approximating the light distribution in the scene. These particles
are then used during rendering for estimating indirect illumination. The
resulting images do not exhibit pixel noise, although undersampling results
illumination artifacts.

Instant radiosity [20] relies on the assumption that most of the indirect
illumination in a scene is caused by diffuse light scattering. Each stored
particle represents the end of a path from the light source and is called a
virtual point light source (VPL). During rendering, these VPLs are used
to illuminate the surfaces visible from the camera, in order to estimate
the diffuse indirect illumination (see Figure 2.6.b). This algorithm is a
special case of bidirectional path tracing, in light paths are fixed in the
pre-process phase and reused for all primary rays during rendering. The
accuracy of the solution directly depends on the number of VPLs, although
plausible approximations can already be achieved with a small number of
VPLs (usually around 300) for moderately complex scenes. Instant radiosity
works well with diffuse and not very specular objects, but cannot capture
specular indirect illumination effects like caustics. Nevertheless, it has cheap
preprocessing and is easy to parallelize.

Instant radiosity provides a robust way of handling diffuse indirect

2.4. INTERACTIVE RAY TRACING 15

(a) (b)

Figure 2.7: (a) Classic ray casting – each ray is traversed and intersected independently.
(b) Packet ray casting – a bunch of rays are traced simultaneously, thus exploiting spatial
coherence resulting in common traversal and intersection decisions.

illumination by converting it to direct illumination. However, high quality
solutions need a large number of VPLs to approximate the light distribution
without illumination artifacts. Furthermore, realistic direct illumination
from area light sources and environment maps also requires many point light
samples. Unfortunately, tracing shadow rays toward thousands of point light
sources for each pixel can be prohibitively expensive.

Walter et al. proposed Lightcuts [51] as a scalable solution to the
many lights problem. Lightcuts can accurately approximate illumination
from many point lights by tracing shadow rays toward a small fraction of
them. The algorithm relies on the fact that small changes in illumination are
not percievable by humans and approximates a group of lights with a sin-
gle representative light, while bounding the approximation error. Lights are
stored in a binary tree, which is traversed during rendering to find an optimal
clustering of lights whose error is below a perceptual threshold. Achieving
logarithmic complexity in the number of point lights, Lightcuts can accu-
rately approximate hundreds of thousands of light sources by shooting only
a few hundred shadow rays. However, traversing the light tree during ren-
dering remains relatively expensive, which drastically reduces the speedup
for the small number of point lights that can be afforded in an interactive
setup.

2.4 Interactive Ray Tracing

As discussed in the previous sections, ray tracing unleashes its full power
when used for simulating physical light transport. The performance of this
simulation depends heavily on the performance of ray casting itself. Because
in the past ray casting has been extremely computationally expensive, it has
been used mostly for offline tasks, where longer rendering times are tolerable

16 CHAPTER 2. BACKGROUND

in favor of high image quality and correct solutions.

With the rapid the development of microprocessors, modern ray cast-
ing algorithms, and highly optimized implementations made it possible to vi-
sualize complex scenes with direct and full global illumination at interactive
frame rates using ray tracing on multi-processor shared memory machines,
small clusters of PCs, and even on a single commodity PC. Interactive vi-
sualization of massively complex models consisting of billions of triangles
has been demonstrated, which is still impossible to do even with high-end
rasterization hardware.

2.4.1 Packet Ray Tracing

One of the most prominent algorithmic and implementational improvements
to the classic ray casting algorithm has been packet ray casting, proposed
by Wald et al. [46] for kd-trees. Relying on the assumption that coherent
rays intersect the same geometry, a bunch of rays is simultaneously traversed
through the acceleration structure and tested for intersection against prim-
itives (see Figure 2.7). A mask of the currently active rays is tracked and
a kd-tree node is visited if any active ray intersects it. The benefit of such
traversal is is big as long as the rays do not diverge, as the cost for loading
and intersecting nodes and geometry is amortized over all rays in the packet.

Using a number of optimizations, Wald et al. achieved a speed-up of
a factor of 10 to 30 compared to other implementations at that time. They
traced packets of four rays, exploiting the Single Instruction Multiple Data
(SIMD) instruction set implemented in the Streaming SIMD Extensions
(SSE) [43] on the x86 microprocessors. The hardware parallel computations
allow to amortize the traversal and intersection costs over the four rays in
the packet. Ideally, all rays in a packet would make the same traversal and
intersection decisions, resulting in four times performance speed-up over
single ray casting. Other important optimizations Wald et al. made were
optimizing and properly aligning kd-tree storage, which enabled better CPU
cache performance, and optimizing ray-triangle intersection.

2.4.2 Frustum Culling for Packet Ray Tracing

The packet ray casting algorithm is trivially generalized to an arbitrary
number of rays by storing ray data in a structure of SSE arrays layout.
Larger packets allow coherence over more rays to be exploited. However, in
practice the computational benefits do not increase, because parallel SIMD
operations can be performed on chunks of 4 rays only. Excessive number of
rays in a packet can also hurt performance, as ray coherence decreases and
the working set gets larger.

Reshetov et al. [34] proposed to exploit coherence between rays in
large packets on multiple levels. Based on the observation that as a packet

2.4. INTERACTIVE RAY TRACING 17

descends rays lose coherence down the hierarchy, their algorithm traverses a
bounding frustum of the packet to quickly find a common entry point for all
rays deep in the hierarchy by robustly culling nodes which the whole frus-
tum skips. Since the frustum is represented by four corner rays, it is almost
as cheap to traverse it as a standard four-wide ray packet. The frustum is
eventually split into sub-frusta which are traced further to find deeper en-
try points for their corresponding sub-packets. Traversal of the actual rays
then starts directly from the entry points found, thus avoiding redundant
traversal in the higher levels of the tree. If the frustum terminates in an
empty leaf, then all bounded rays do not intersect any geometry and can be
safely discarded from further processing. If the entry point is a non-empty
leaf node, then only geometry intersection needs to be performed with the
actual rays. By further modifying the kd-tree data structure, Reshetov et al.
achieved a speed-up of a factor of 10 over previous implementations. How-
ever, the traversal algorithm works well only for primary rays and cannot
be easily applied for secondary rays.

Wald et al. [47] applied frustum culling of large ray packets to bound-
ing volume hierarchies. Additionally, they keep track of the first active
ray in the packet, which is used to quickly check whether the whole packet
should descend down a BVH node. Their algorithm shows best performance
when applied to large packets of size 8x8 or 16x16, which is justified by the
constant complexity of the first active ray and frustum culling tests. Wald
et al. also employ a conservative ordered (front to back) traversal of the
nodes by storing extra information in the nodes during building. Exploiting
the property of the BVH that its topology can be independent of geometry
deformation, they were able to interactively render dynamic scenes on a sin-
gle PC. The BVH traversal algorithm has been also successfully applied for
shadow and secondary rays.

2.4.3 Interactive Global Illumination

As global illumination algorithms spend most of their time in tracing rays,
the interactive ray tracing creates the potential for computing physically-
correct light simulations in real time, which has been a long-standing goal
for computer graphics research. However, computing global illumination
is inherently more complex than classic Whitted ray tracing. In order to
achieve interactive performance with a real-time ray tracer, a global illu-
mination algorithm should be easily parallelized and should require as few
rays as possible for a plausible solution. Furthermore, it should require min-
imum preprocessing in order to be able to quickly respond to changes in the
scene, and should employ cheap surface shading which should not become a
performance bottleneck.

Most of the current state of the art interactive global illumination al-
gorithms are based on instant radiosity, which has cheap preprocessing and

18 CHAPTER 2. BACKGROUND

only computes direct illumination from light sources during rendering. Wald
at al. [50] and Benthin et al. [4] applied packet tracing algorithms for inter-
active rendering of complex scenes with diffuse global illumination on small
clusters commodity of PCs. Relying on the fact that diffuse indirect illu-
mination varies smoothly, they reduce its complexity using interleaved sam-
pling of virtual point light sources and averaging VPL illumination across
neighboring pixels by employing discontinuity buffer filtering. Using only a
few coherently traced rays per pixel, their solution allows interaction with
the scene and scales near linearly with the number of clients.

Recent research in interactive global illumination based on instant ra-
diosity has focused mainly on efficient sampling of VPLs. Segovia et al. [37]
sample VPL locations both from the camera and the light sources, which
was later generalized to metropolis sampling [38], in order to provide a view-
dependent solution in difficult visibility settings.

The recent advances in hardware have enabled interactive simulations
of light transport, which have been not possible before. Modern processors
provide more and more computational power as their design is shifting to-
ward parallelism on two levels – multiple processing cores and explicit data
parallelism. Current CPUs accommodate up to four separate cores, each
implementing the SSE instruction set, while GPUs utilize single instruction
multiple thread (SIMT) data parallelism on hundreds of scalar cores [25].
Recently, interactive ray tracing has been also achieved on specialized hard-
ware, such as the CELL processor [3] and GPUs [32, 8, 31, 15].

Massive parallelism and increased hardware programmability make it
very likely that future rendering engines will be almost entirely implemented
in software [22]. This implicates that flexible interactive systems which
can deliver ray tracing to application developers and thus to end users will
become of primary importance.

Chapter 3

Ray Tracing Systems

Ray tracing is a powerful and intuitive tool for generating realistic images.
Rendering systems based on ray tracing are widely used for offline rendering
tasks, but there is also an increasing interest in utilizing ray tracing for
interactive rendering.

In this chapter, we will give an overview of some existing offline and
interactive ray tracing systems and will evaluate their designs and perfor-
mance.

3.1 Basic Infrastructure

In order to capture an image of a synthetic scene, we have to put a camera
somewhere in the scene and compute the radiance falling onto its sensors,
i.e. the pixels on the images plane. To do this, a ray tracer will usually shoot
a ray through each pixel, traverse it though the acceleration structure, and
shade the first hit surface point (assuming there are no participating media
in the scene). Depending on the type of surface and the desired illumination
effects, one or more rays will be eventually traced from the hit point – a
shadow ray toward a light source, another ray in the reflection or refraction
directions, or a ray in a random direction in the case of stochastic light
integration. After the information about the incoming radiance has been
gathered, the radiance reflected back along the camera ray is estimated by
evaluating the BSDF of the surface, which is essentially solving Equation 2.2.
The total radiance is finally written as a color to the framebuffer.

The stages in the process, illustrated in Figure 3.1, outline the basic
functionality a ray tracer should support. In the following two sections we
will discuss how existing ray tracing systems build their infrastructure for
supporting various implementations and configurations of these stages.

19

20 CHAPTER 3. RAY TRACING SYSTEMS

Sample Ray

Radiance

Intersection Ray

Sample
image plane

Sampler

Generate
primary ray

Camera

Shade hit
surface

Shader

Convert and
write color

Framebuffer

Find ray
intersection

AccelStruct

Figure 3.1: A ray tracer would usually first pick a sample on the image plane, then
generate a primary ray from the camera and trace it. As soon as an intersection has
been found, the hit point is shaded after eventually tracing and shading secondary rays
recursively. Finally, the computed radiance is written to the framebuffer.

3.2 Offline Ray Tracing Systems

When the ultimate goal is photorealism, ray tracing is often the rendering
method of choice. Companies in advertising, architecture, movie, and car
industries use ray tracing systems to produce high quality images of their
products, thus saving time and resources on taking pictures under natu-
ral conditions or even manufacturing these products. Such systems render
complex geometry with sophisticated materials and illumination effects.

Offline high-quality ray tracing systems are usually required to pro-
vide great flexibility and fine control over the rendering process. This is
achieved by carefully abstracting rendering stages and components in in-
terfaces, which allow specific implementations with polymorphic behavior
to be plugged in, depending on the specific application requirements. Such
infrastructures are often implemented with C++ class hierarchies with fine
granularity, which allow connecting loosely coupled components that com-
municate through predefined interfaces. This way the renderer, for example,
can trace rays through an acceleration structure, invoke a shader at the hit
point, which will sample a light source, all of which are unknown at design
time and communicated through common abstract interfaces. Such infras-
tructure allows different implementations to coexist in a single environment
and to be manages independently from each other.

In order to provide maximum extensibility and interoperability, some
rendering systems expose binary APIs for specifying geometry and for im-
plementing custom shaders [30, 28]. Some systems also provide specific
shading languages [30, 26], which provide simple syntax for writing custom
components, such as materials, light sources, and cameras.

3.2. OFFLINE RAY TRACING SYSTEMS 21

CameraSampler

SurfaceIntegrator

VolumeIntegrator

Sample Ray

Ray

Directions/
Sample

Spectrum/
Ray

Spectrum

Spectrum

Sample

Film Scene::Render()

Light

Primitive

RaySpectrum

Spectrum

.

Primitive

Intersection,
BSDF

Ray

.

BSDF
Ray

Intersection,
BSDF

Figure 3.2: The main rendering loop and class relations of PBRT. The Sampler pro-
vides a sample which the Camera uses to generate a primary ray. This ray is passed
to the integrators, which return the radiance along the ray, which is in turn given to
the film to store it in image. The SurfaceIntegrator uses Primitives to find the
first ray-surface intersection. The intersection structure extracts a BSDF for the surface,
which is then used to determine the illumination from the Lights in the Scene.

3.2.1 PBRT

PBRT is a free and extensible physically-based ray tracing framework, re-
leased by the authors of the book “Physically Based Rendering” [28]. It is
widely used in the academic field and in computer graphics courses. The
renderer is written using a plug-in architecture – the core system only de-
fines the main rendering loop with minimal control flow. The components in
the pipeline are written in terms of fine-grained abstract base classes which
define the interfaces to the plug-ins. Components are loaded at run time to
provide scene-specific functionality.

System Overview

The rendering pipeline of PBRT, illustrated in Figure 3.2, starts by sampling
the image plane and generating a camera ray using the sample position. The
ray is given to volume and surface integrators, which compute the radiance
flowing back along the ray toward the camera. Finally, the radiance is passed
to the film, which stores it in the framebuffer.

All geometric primitives and acceleration structures implement the
Primitive interface, which provides functions for ray intersection and query-
ing surface reflection and emission properties. This makes the structure of

22 CHAPTER 3. RAY TRACING SYSTEMS

the scene geometry completely transparent to other components, as it can
consist of a single primitive or a complex hierarchy of acceleration struc-
tures, each containing different kinds of primitives. Geometric primitives
themselves are instantiated with transformations by their containers and
perform intersection computations in object space.

The Integrator is a central component in PBRT. It is responsible for
computing the radiance reaching the camera sensors and coordinates most of
the rendering process. The two types of Integrators – the SurfaceIntegrator
and the VolumeIntegrator, process the camera ray one after the other, and
the radiance values are finally blended based on the cumulative opacities
along the ray. This allows for seamless integration of volumetric and geo-
metric objects in one scene.

Shading Infrastructure

In contrast to traditional rasterization-based and ray tracing renderers,
PBRT employs a physically-based shading model. In PBRT, rays are traced
by Integrators, while sampling and evaluating surface reflection is per-
formed by BSDFs, which are aggregated by Materials. This fine-grained
abstraction model allows a single integration algorithm to work with all
kinds of materials and vice versa. Materials can in turn share common
BSDF parts and are completely independent from the ray tracing function-
ality. Given a surface intersection structure, Materials query Textures to
get the color at the particular intersection point and return a BSDF object,
which is handled by the integrator. Thus, all materials can be combined
with any texture, which can return a constant color, a texel from an image,
or generate the color procedurally.

Light sources work similarly to materials. The Light interface defines
functions for sampling a position at the light source, computing the light
contribution to a surface point, and for initializing a light ray for global
illumination computations.

PBRT is a highly flexible system and provides a plug-in infrastructure,
which facilitates extensibility. Emphasising on code reuse and well designed
interfaces, the system is useful for a great variety of physically-based ren-
dering tasks and is popular among researchers.

Unfortunately, as highly modular as the system is, its performance
remains far from interactive. Even with optimized data structures and effi-
cient light integration algorithms rendering a single frame within PBRT can
take hours. Excessive run-time memory allocation and virtual function calls
at fine granularity inhibits compiler optimizations and imposes significant
run-time overhead. The single ray pipeline simplifies the overall design of
the system, but also disables packet tracing algorithms which exploit ray
coherence and improve cache behavior. As a batch ray tracer, PBRT was

3.3. INTERACTIVE RAY TRACING SYSTEMS 23

also not designed to take advantage of the parallelism supported by modern
CPU architectures.

PBRT has been designed as a self-contained application, which is only
controllable via plug-in modules. While such architecture is convenient for
educational purposes, it makes integration of the renderer with other appli-
cations much harder or even impossible.

3.3 Interactive Ray Tracing Systems

Ten years after first demonstrated on large supercomputers, interactive ray
tracing has become available to commodity computers. With the rapid
development of microprocessors and ray tracing algorithms, interactive ray
tracing has become an interesting alternative to traditional rasterization-
based rendering. Companies in airplane and automotive industries already
use interactive ray tracing systems for physical light simulation and realistic
rendering of complex models.

Current interactive ray tracing systems rely on software implemen-
tations and highly optimized algorithms and data structures. In order to
enable compiler optimizations and achieve best performance, some inter-
active systems fix some functionality, such as the acceleration structures,
the intersection algorithms, and the types of supported geometry, and ex-
pose only functionality for specifying geometry and writing shaders. Others
provide coarse-grained abstractions for the components in their pipeline,
balancing between flexibility and performance.

True interactivity means ability to perform modifications to the scene
during rendering. Dynamic geometry has historically been a problem for ray
tracing, as it relies on optimized pre-built spatial index structures to achieve
interactive performance. While this is not a big issue in an offline setup, a
real-time ray tracer cannot always afford to rebuild its data structures from
scratch for each frame. Therefore, some interactive systems provide basic
support for scene graphs, which track and localize scene changes, and build
multiple levels of acceleration structures.

3.3.1 OpenRT

OpenRT was the first attempt to standardize an API for interactive ray
tracing [10, 11]. As a developer-oriented framework, OpenRT provided an
API close to OpenGL, in order to ease adoption and porting of existing
applications. At the time OpenRT was developed, ray tracing was still
not fast enough to deliver the needed interactive performance on a single
machine, therefore the backend supported distributed rendering, which re-
mained mostly transparent to the user. OpenRT actually specifies two dif-
ferent APIs – one for scene description and one for shading and extensibility.

24 CHAPTER 3. RAY TRACING SYSTEMS

Core API

The core OpenRT API provides a set of C functions for specifying geometry,
lights, textures, transformations and binding shaders to geometry. The API
resembles the state stack and provides a sub-set of OpenGL’s functionality.
OpenRT supports only retained mode rendering, since immediate mode ren-
dering does not make sense in a ray tracing environment, where visibility
calculations only take place once the full scene geometry has been specified.

Geometric primitives in OpenRT are contained in objects which can
be instantiated with transformation matrices. This allows geometry to be
specified once and reused multiple times, thereby avoiding data replication
and enabling visualization of massive models with low memory footprint.
An acceleration structure is build for each object immediately after it has
been specified and is kept unchanged until the destruction of the object. In-
dividual instances can be modified by simply changing their transformation
matrix. Each time an instance has been changed, a top-level acceleration
structure is rebuilt over all instances, which is relatively small and thus
cheap. This two-level scene graph allows for robust handling of dynamic
scenes with rigid object animations.

Shading API

The OpenRT shading API, called OpenRTS, provides a set of interfaces for
extending the base system with new functionality and controlling the main
rendering loop. It provides shader interfaces not only for surfaces, but also
for the environment texturing, cameras, lights, and the main rendering loop.

The fixed function part of OpenRTS consists of C functions for man-
aging and tracing rays. All ray and intersection data is stored in the RTState

structure, and most of the shading infrastructure is organized around it.

The major part of the OpenRT shading API is formed by a C++
shader class framework. It defines a set of abstract interfaces for writing
custom shaders, which can be loaded dynamically at run time. The class
relations are illustrated in Figure 3.3.

The central component driving the rendering process in OpenRT is
the RTRenderingObject. In a single threaded environment, it is responsible
for sampling the image plane, generating primary rays using RTCamera, and
writing the final color to the framebuffer. The rendering object invokes pixel
(or sub-pixel) computations for each primary ray by calling the rtsTrace()

function. In the case of client/server distributed environment, the main
rendering object runs on the server, which subdivides the image plane into
tiles, and delegates rendering to clients. After all tiles have been rendered,
it combines the tiles into an image and writes it to the framebuffer.

The rtsTrace() function traces a given ray and invokes the shader
of the first hit surface. In case of no intersection, an environment color is

3.3. INTERACTIVE RAY TRACING SYSTEMS 25

RTRenderingObject

RTEnvironmentShader

RTShader

RTCamera

RTLight

RTState

RTState

Radiance

RTState

Radiance

RTState Bool

RTState Radiance

RTState Radiance

rtsTrace()

rtsShootRay()

RTState,
Radiance

Figure 3.3: Class relations of the OpenRT shading API. The RTRenderingObject

implements the main rendering loop and is responsible for generating camera rays and
writing the final color values to the framebuffer. The rtsTrace() function traces a
ray and invokes the shader of the first hit surface or RTEnvironmentShader in case
of no intersection. The surface shader (RTShader) is responsible for computing the
illumination at a surface point and can sample light sources and shoot occlusion rays
through rtsShootRay() or secondary rays by calling rtsTrace() recursively.

computed by the global RTEnvironmentShader. The RTShader is responsi-
ble for computing the color at a given point and can sample lights using
the RTLight interface and shoot occlusion rays by calling the rtsShootRay()

function. The rtsTrace() function can be called recursively in RTShader in
order to simulate secondary lighting effects, such as reflection or indirect
illumination.

OpenRT has been successfully applied in industrial applications where
interactive physical lighting simulations are needed [48]. Airplane compa-
nies use it for simulating lighting in passenger cabins, while automotive
manufacturers use it for realistic visualization of car interior and exterior.
Such companies install OpenRT in their visualization centers, where clusters
of PCs and shared memory machines provide the sufficient horsepower for
interactive visualization of their complex models.

Unfortunately, OpenRT has failed to adopt modern interactive ray
tracing technology. The OpenRT shading API was designed to operate
on single rays only, because it was too complicated for the end user to

26 CHAPTER 3. RAY TRACING SYSTEMS

write SIMD shaders. Thus, commercial implementations of OpenRT were
restricted to tracing and shading single secondary rays, while only primary
ray casting was hand-coded in SSE, which reduced the overall rendering per-
formance. While at the time of designing the OpenRT infrastructure packet
tracing was only about two times faster than single ray tracing, modern
state of the art packet tracing algorithms can perform much faster, often
being able to deliver on a single PC the same performance that OpenRT
would provide on a small cluster of PCs.

OpenRT uses fixed internal acceleration structures and ray casting
algorithms, which are entirely hidden behind the API. The API itself does
not provide any control over how and when these structures are built, while
rendering can be controlled only through plug-ins. As a result, extending the
core ray tracing functionality of OpenRT is impossible, and tight integration
into user applications is limited.

Another disadvantage of OpenRT is the surface shading model, which
incorporates light integration, texturing, and BSDF evaluation in a single
component – the RTShader. As discussed in the previous section, such shad-
ing model requires a particular reflectance model to be duplicated in multiple
shaders for each light integration algorithm and vice versa. For example,
one might end up having a simple FlatPhongShader, a more sophisticated
PathTracingPhongShader, or a TexturedPhongShader, all having the same
replicated piece of code.

3.3.2 Manta

The Manta interactive ray tracer [5] proposed a software model to lever-
age modern architectures, while delivering both interactivity and flexibility.
The system is designed to take advantage of instruction- and thread-level
parallelism that are available in commodity CPUs. Manta provides a set
of virtual interfaces for plugging user extensions. These interfaces utilize
wide ray packets in order to amortize the run-time overhead imposed by the
interfaces. The system has a two piece model, focusing on scalability and
maximum hardware utilization – a multi-threaded parallel pipeline and a
collection of ray tracing components organized in a rendering stack.

Parallel Pipeline

One of the objectives of Manta is to achieve maximum scalability on parallel
shared memory architectures. In order to fully leverage multi-core systems,
different tasks should be well load balanced and synchronized as few times as
possible. To address this, Manta employs a parallel rendering pipeline, which
manages the execution of tasks and controls thread activity (see Figure 3.4).

The pipeline consists of several stages, in which tasks with similar load
balancing characteristics are executed by each thread. Synchronization is

3.3. INTERACTIVE RAY TRACING SYSTEMS 27

Transactions

Image display

Rendering

Sync. barrier

Animation

Thread n

Thread 2

. .

Thread 1

Figure 3.4: The Manta parallel rendering pipeline. Animation callbacks are first ex-
ecuted by all threads. After that thread 1 begins image display, while the rest start
executing dynamically load balanced rendering jobs. After finishing, thread 1 joins ren-
dering. In the mean time, external events are recorded as callbacks and added to the
queue, which is safely is flushed when the next synchronization barrier is reached.

constrained to happen only at certain points, in order to efficiently scale
with a large number of rendering threads. Inherently balanced tasks, like
parallel animation callbacks, are executed first. Imbalanced tasks, like image
display, are scheduled next, and finally dynamically balanced tasks are, like
rendering, are executed. Image display is performed asynchronously with
rendering to reduce the overhead of such batch tasks. This means that
displaying one frame is delayed until the rendering of the next one starts.
To achieve this, two framebuffers are used – one for displaying and one for
rendering, which are swapped at the end of each frame.

A synchronization barrier at the end of the pipeline waits for rendering
to finish. Only after the barrier has been reached, modifications to the scene
can be safely performed. During rendering Manta receives events and pushes
callbacks into a queue, which is flushed when the barrier is reached. This
removes the need of double buffering the whole rendering state and reduces
the amount of time threads spend on waiting for mutexes.

Rendering Stack

The rendering pipeline of Manta is organized in a modular stack which is
traversed asynchronously by each thread (see Figure 3.5). First, the image
traverser divides the frame into regions and assigns these regions to threads.
It tries to balance the workload so that all threads are kept as busy as
possible and finish rendering at approximately the same time.

The image traverser component passes image fragments to the pixel
sampler, which picks pixel sample locations and maps a ray packet to each
tile. Ray packets are then passed to the renderer. The renderer is respon-
sible for intersecting the rays with the scene and invoking surface shaders.
After intersection, ray packets are split into sub-packets that hit the same
shader. These sub-packets are not copies of the original data, but only store

28 CHAPTER 3. RAY TRACING SYSTEMS

54

Image traverser

Pixel sampler

Renderer

ShadersIntersection

Tile

Samples

Rays Colors

Sample colors

Filtered colors

Rays

Intersection

Intersection

2

1

3

7

8

6

Figure 3.5: The Manta rendering stack is asynchronously traversed by the threads
executing rendering tasks.

sub-ranges of active rays. After the rays have been shaded, they are passed
back to the pixel sampler. The pixel sampler eventually performs filtering
on the samples and gives them to the image traverser, which writes the final
colors to the framebuffer.

Manta aims at delivering both flexibility and performance, while scal-
ing to large shared memory machines. It achieves greater flexibility than
OpenRT by providing interfaces for different components in the rendering
pipeline and the rendering stack. The system has been successfully applied
to a variety of rendering tasks, including massive model visualization, vol-
ume isosurface rendering, and has achieved near linear scalability to a large
number of processors.

The system focuses on massive parallelism and its single thread per-
formance is considerably lower than other optimized implementations. The
interfaces in Manta have been designed to work on wide packets of rays, in
order to amortize the cost of virtual functions over many rays. However,
wide ray packets assume high coherence during all stages in the rendering
stack, which is often true only for primary rays. As a result, packets are
split at an early stage into incoherent sub-ranges, which are intersected and
shaded independently, thus breaking the assumption. Furthermore, the size
of the data allocated for a ray packet is globally fixed for the whole system at
compile time, and sub-packets are represented either as sub-ranges or masks

3.3. INTERACTIVE RAY TRACING SYSTEMS 29

on this data. This adds processing overhead and prohibits the co-existance
of ”real” packets of different sizes.

Ray packets in Manta are usually shaded and intersected in SIMD.
However, separate scalar and SIMD code paths exist in the whole sys-
tem, and SIMD code paths are written entirely using low-level intrinsics.
This greatly reduces code maintenance and portability. Similarly to PBRT,
Manta provides an application-centric rendering solution that can be con-
trolled only through plug-ins, which makes it very hard to be integrated
with other applications.

3.3.3 RTSL

Parker et al. [26] proposed RTSL as a domain-specific language (DSL) for
extending ray tracing systems. It provides a simple and intuitive syntax
for implementing custom camera, primitive, light, material, and texture
shaders, which can be used in multiple rendering systems. The language
includes some features found in general purpose languages, such as func-
tions, classes, interfaces, and inheritance. Custom RTSL components should
implement specific predefined interfaces. For example, the primitive inter-
face defines functionality for intersection, and normal, bounds, texture, and
derivative computation. Materials support both a physically-based BSDF
evaluation and sampling interface, as well as an imperative shading function
which computes the final color at a hit point.

A specialized compiler is used to produce scalar and SIMD code C++
from scalar RTSL code. This allows non-experienced programmers to write
custom rendering components without having to deal with optimizations
and parallelization on any level.

In order to retain a simple syntax, RTSL does not allow for control-
ling the rendering loop or writing acceleration structures, for which support
from the underlying system is required. Also, in the case of physically-based
rendering, the light integration algorithm has to be implemented outside
RTSL, as RTSL materials only provide a BSDF interface. The strong bar-
rier between the language and the underlying renderer requires all available
functionality to be explicitly exported to the language, which is strongly
renderer-dependent. RTSL balances between a least-common-denominator
and a renderer-specific solution, which is a questionable trade-off. Further-
more, it is unclear how, for example, Quasi-Monte Carlo integration and
interleaved sampling should be supported in the language, or how to take
advantage of ray coherence in primitive intersection RTSL functions.

RTSL is a convenient and developer-friendly ray tracing shading lan-
guage. However, it can only be added on top of an already working system,
as it does not provide a full solution that is both flexible and efficient.

30 CHAPTER 3. RAY TRACING SYSTEMS

Chapter 4

Design Considerations

Software ray tracing has been historically slower than hardware rasteriza-
tion, which dominates most interactive applications. The recent advances in
hardware and research have made ray tracing competitive to rasterization
for some applications, but complex indirect illumination effects still cannot
be simulated in real time and bring complications to the architecture of a
ray tracer. Therefore, ray tracing renderers have had to make a common
design decision – the trade-off between flexibility and performance.

In this chapter we set the requirements for our real-time ray tracing
framework, based on the observations we made in Chapter 3. We then
evaluate some possible design approaches and choose the one that best meets
our requirements.

4.1 Flexibility Requirements

A general problem of high performance ray tracing implementations is the
tight integration of algorithms and data structures in the code. Such ren-
derers also provide a fixed shading pipeline with a limited set of supported
materials and geometry [6]. However, versatility is the most prominent ad-
vantage of ray tracing over rasterization-based visibility algorithms. For
example, architectural objects are usually represented by planar triangles
and quadrilaterals, while characters in movies are modeled as subdivision or
higher order surfaces, all of which can be elegantly handled with ray trac-
ing. Furthermore, there are many illumination models that can be handled
accurately only with ray tracing. Thus, an absolute requirement for our
framework is to support various ray casting and intersection algorithms, ge-
ometry, and illumination models, and to provide a flexible infrastructure for
combining them.

Another requirement for our system is seamless support for ray pack-
ets. Modern high performance ray tracing algorithms operate on packets
of ray data simultaneously. In addition, single ray SIMD tracing is also an

31

32 CHAPTER 4. DESIGN CONSIDERATIONS

active area of research [9, 45]. Thus, it would be desirable for our framework
to handle single rays and packets of rays in a unified way, i.e. without the
need of two redundant code paths for the entire rendering pipeline.

All ray tracing systems, discussed in the previous section, have a com-
mon problem – integration with other applications. PBRT and Manta can
be only extended and controlled to some degree using plugins, while OpenRT
provides only a geometry specification API that can be integrated into user
applications. To overcome this problem, we set the requirement for our
framework to be a library which exposes all of its functionality via a set
of unified interfaces. It would be also desirable to allow full control over
the rendering process, i.e. our library should not rely on a fixed rendering
pipeline.

4.2 Performance Requirements

The most pragmatic performance requirement for our ray tracing library is
pretty natural – it should be able to deliver the same performance as single-
purpose hand-optimized implementations. If it does not, people might still
prefer to use other implementations.

The most important aspects of high performance computing on mod-
ern microprocessors are parallelism and memory utilization.

4.2.1 Parallelism

Ray tracing is often qualified as embarrassingly parallel, as computations
for different pixels can be performed independently. The first interactive ray
tracers ran on large supercomputers [24, 27]. They traced a single ray at a
time and used screen-space parallelisation by assigning pixel tiles to different
processors. Modern microprocessors accommodate multiple processing cores
whose number is doubling almost every year, and systems like Manta and
OpenRT target such machines to achieve high performance. Thus, our real-
time ray tracer has to be thread-aware, in order to scale well to a large
number of cores.

As discussed before, modern ray tracing algorithms operate on pack-
ets of data simultaneously, thereby employing hardware SIMD instruction
sets. Follow the trend of hardware SIMD units getting wider in future, our
library should take advantage of data parallel processing as much as possible
and should provide an infrastructure for tracing and shading packets of rays.
Wide SIMD units will also increase coherence requirements, thus new algo-
rithms are likely to be developed for such architectures. Our infrastructure
should be extensible enough to be able adapt to such future changes.

4.3. FLEXIBILITY VS. PERFORMANCE 33

4.2.2 Memory Bandwidth and Cache Utilization

Rendering algorithms are usually easily parallelized, as they write only small
amounts of data for each pixel to the framebuffer independently. However,
the amounts of data being processed during ray casting and shading are
usually large and accessed incoherently. Standard scenes consist of millions
of geometric primitives for which acceleration structures are additionally
built, and memory bandwidth can easily become a performance bottleneck.
Thus, optimizing data storage and layout is essential for reducing bandwidth
requirements and achieving maximum utilization of the multi-level caches
of current CPUs. State of the art ray tracing implementations take special
care of memory alignment and packing data for coherent memory access,
e.g. minimizing and arranging kd-tree node data in a way that chunks of
nodes fit exactly into a single cache line. They also minimize the working
memory set at any point in time in order to avoid excessive spilling of CPU
registers into memory. Our library should therefore be carefully designed to
employ such optimizations.

4.3 Flexibility vs. Performance

There has always been a wide performance gap between flexible ray trac-
ing systems and single-purpose hand-optimized implementations. This gap
is caused to a large degree by the infrastructural overhead imposed by the
support of various configurations of algorithms and data structures. How-
ever, our observation is that most of the flexibility provided by general pur-
pose renderers is actually needed at compile time and not necessarily at run
time. For example, more often than not, the choice of acceleration structure
and intersection algorithm can be made before compiling the application,
while for most cases the types of materials can be only determined at run
time. In such cases, it seems reasonable to fix the ray intersection function-
ality at compile time, while providing run-time support for different surface
materials.

One of our main goals will be to take advantage of the above observa-
tion and focus on maximum compile-time composability, while providing the
opportunity to pay a performance price only when the provided flexibility
is really needed at run time.

Some ray tracing systems provide too general abstractions for custom
components. A classic example are the imperative surface shaders which are
attached to geometry and are responsible for performing all the calculations
for determining the color at a point. Such general abstractions enable highly
optimized implementations, but can also lead to code replication, which
reduces maintainability. Therefore, our library should be carefully designed,
in order to avoid such code redundancy whenever possible.

While asynchronous thread execution does have some impact on the

34 CHAPTER 4. DESIGN CONSIDERATIONS

low-level design of a ray tracing system, algorithms and data structures
need to be updated or even developed from scratch in order to take full
advantage of explicit data-level parallelism. Such low-level optimizations
are crucial for the overall performance of a ray tracer, but imply unintuitive
data layout and use of non-standard compiler intrinsics, which are thin wrap-
pers around processor’s instructions. Such low-level code will not be easily
portable to future architectures which might have wider SIMD units. Thus,
it would be desirable for our library to provide more intuitive abstractions
for data-parallel computation, independent of the underlying instruction set
and SIMD width. This would allow easy porting to future architectures
without the need of modifying the source code of the entire library.

To talk it all together, the main objective of our real-time ray tracing
library will be to provide a set of loosely coupled and fine-grained compo-
nents and extensible interfaces, and all this without hurting performance.
Well-designed interfaces help avoid many of the flexibility and extensibility
problems we discussed above. The reason that most interactive ray tracing
systems do not provide such flexibility has been that usually comes with
considerable run-time overhead, especially at fine granularities. Therefore,
we have take to take into account the fact that what is usually sufficient is
compile-time flexibility, and we will optimize for that, while providing the
opportunity for run-time flexibility where needed.

In the next sections we will discuss some design paradigms and will
evaluate how they can help us meet our requirements.

4.4 Object-Oriented Design

All ray tracing systems, that we discussed and know of, have used object-
oriented design with abstract virtual interfaces to achieve flexibility and
polymorphic behavior of different component implementations, e.g. for in-
voking shaders. This approach has the advantage of being well studied and
allows software components to be connected at run-time, e.g. using plug-ins.
This late binding facilitates decoupling in the sense that different compo-
nents can be compiled more or less independently.

Unfortunately, dynamic polymorphism comes at a performance price.
Late binding disables function inlining and inter-procedural optimizations
otherwise automatically performed by the compiler. Furthermore, each vir-
tual function call imposes execution overhead, even if the provided flexibility
is not required at run time. This implies that a fine-grained abstraction hier-
archy can seriously degrade application’s performance. That is why previous
interactive systems that have employed object-oriented design have compro-
mised both flexibility and performance, achieving neither the generality of
offline rendering systems nor the speed of hand-tuned implementations.

4.5. DOMAIN-SPECIFIC LANGUAGES 35

Abstract interfaces also bring memory overhead – each virtual func-
tion increases the size of a type with the size of one pointer. This overhead
gets larger if a specific alignment is required for a type, as adding the pointer
causes padding of aligned data. Thus, the system might end up using as
much as twice the amount of memory needed by the raw data, only be-
cause it allows polymorphic behavior of different components, even if this
is not needed by the application. Thus, putting virtual interfaces at fine
granularities will increase CPU register pressure and memory bandwidth
requirements.

Another deficiency of object-oriented design is that it encourages cou-
pling algorithms to data structures. Thus, ray tracing systems often imple-
ment building, traversal, and intersection algorithms within the acceleration
structure and geometric primitive classes. As a result, different algorithms
cannot be applied on the same data structures and vice versa, which re-
duces component reuse. The problem can be reduced by abstracting the
acceleration structure implementations behind common sets of virtual in-
terfaces. However, such separation is never actually used, as it would bring
additional run-time overhead to functions which would need to be called
millions of times each frame. A purely object-oriented design approach is
therefore not an option for us, because it cannot deliver both flexibility and
performance.

4.5 Domain-Specific Languages

One option for creating a flexible compile-time infrastructure would be to
develop a domain-specific language (DSL). Such language would provide
an intuitive and convenient syntax for writing custom components. At the
same time, it would allow us to have more control over the low-level code
generation via a specialized compiler.

A general problem of the DSL approach is that the development com-
plexity directly depends on the level of functionality exposed to the language.
Limited-scope problems tend to benefit from specialized languages, as their
syntax remains simple and the compiler can be developed to fully under-
stand the needs of a program from that domain and thus optimize the code
well.

However, when we start increasing the scope of the language by al-
lowing, for example, expressing ray tracing algorithms and data structures,
we have to start considering efficiency, virtual functions, inlining, complex
types, propagating properties, such as data alignment, to name a few. All
this would bring considerable complication to the compiler, the supporting
infrastructure, the language, for which it will become likely to converge to
a general purpose language, which we have tried to avoid in the first place.
For this reason, RTSL does not allow expressing complex algorithms and

36 CHAPTER 4. DESIGN CONSIDERATIONS

data structures, but requires support from an underlying rendering system,
for which the compiler also has to be modified accordingly.

Domain-specific languages are convenient because of their simple syn-
tax, which makes them useful mostly for small and isolated problems. We
believe that ray tracing is a tool which should also be used for applications
other than rendering, such as collision detection, and object interaction. A
context-dependent DSL would make such integration much harder. That is
why we prefer to build a context-free library using a general purpose lan-
guage and provide a flexible and convenient infrastructure for implementing
reusable algorithms and data structures.

4.6 Generic Programming

The C++ programming language provides support for a third, often con-
sidered obscure, design paradigm – generic programming. Generic program-
ming [23] is a software methodology for developing reusable and efficient
software libraries. It advocates definition of algorithms at an abstract level,
completely independent of the underlying data representation, in order to
increase component composability and code reuse, while maintaining effi-
ciency.

While non-generic libraries use interfaces operating on predetermined
data types, generic libraries provide algorithms that define the minimal re-
quirements from the data types they are instantiated with. Thus, a generic
algorithm can be used with any type meeting its requirements. The C++
Standard Template Library (STL) was the first widely used library to adopt
these concepts.

4.6.1 Class and Function Templates

Generic algorithms can be expressed in C++ using class and function tem-
plates. Templates are definitions of classes and functions which can have
class and integer compile-time parameters. Consider the following exam-
ple:

template<class tElement, unsigned int taSize>
class Array
{
Element values[taSize];

public:

Element get(unsigned int aIndex)
{
assert(aIndex < taSize);
return values[aIndex];

}

void set(unsigned int aIndex, Element aValue)

4.6. GENERIC PROGRAMMING 37

{
assert(aIndex < taSize);
values[aIndex] = aValue;

}
};

template<class tElement, unsigned int taSize>
void fillWithZero(Array<tElement, taSize>& aArray)
{
for(unsigned int i = 0; i < taSize; ++i) {
aArray.set(i, 0);

}
}

The Array template class represents a simple static array. It can store
elements of any type, providing safe accessors to the data, and can have
arbitrary compile time defined size. The fillWithZero function can operate
on Arrays with any element type, as long as the element can be assigned the
value 0.

Templates can also have specializations for certain parameters:

template<unsigned int taSize>
class Array<bool, taSize>
{
unsigned int values[taSize / 32 + taSize % 32 ? 1 : 0];

public:

bool get(unsigned int aIndex)
{
assert(aIndex < taSize);
return (values[aIndex / 32] >> (aIndex % 32)) & 1;

}

void set(unsigned int aIndex, bool aValue)
{
assert(aIndex < taSize);
values[aIndex / 32] =
(values[aIndex / 32] & ~(1 << (aIndex % 32))) |
(aValue << (aIndex % 32));

}
};

The above specialization provides a storage efficient implementation of the
Array class for elements of type bool. The fillWithZero function will still
work with this specialization of the class, at it provides the same interface as
the generic version. Since templates are instantiated at compile time, type
dependencies are resolved without the overhead of run-time support code,
such as virtual function calls. Static binding also enables inline function
expansion and inter-procedural optimizations. This allows special case code
to be resolved at compile time, without the need of separate code paths in the
algorithms. For the above examples the compiler will automatically generate
different core for each instantiation of the Array class and the fillWithZero

38 CHAPTER 4. DESIGN CONSIDERATIONS

function, eventually optimizing each version in the best possible way.

4.6.2 Concepts and Models

A concept in generic programming is the set of requirements that a data type
needs to meet in order to work correctly with a generic algorithm. Consider
the following example:

template<class tType>
void order(tType& aElement1, tType& aElement2)
{
if(aElement1 > aElement2)
{
tType tempElement = aElement2;
aElement2 = aElement1;
aElement1 = tempElement;

}
}

The function order can order elements of any type that meets the require-
ments of the Comparable concept, i.e. which defines the greater-than op-
erator. It is also said that such types model the concept.

A slight inconvenience in the above example is that requirements of
the Comparable concept are concealed within the definition of the order

function. Concepts can be explicitly described with pseudosignatures, which
are pseudo class declarations specifying a set of requirements:

class Comparable
{
public:
bool operator>(const Comparable& aOther);

}

Pseudosignatures can be extracted from actual implementations of a types
that meet the specified requirements. Pseudosignatures have no semantic
meaning – they play a purely documentation role. This means that the
models of a concept do not need to explicitly inherit any specific classes or
interfaces. On the other hand, the compiler cannot check whether a type
models a certain concept, which might result in obscured error messages.
Explicit support for concepts is scheduled for the next C++ standard re-
lease [41].

In some sense, concepts are analogous to abstract interfaces in the
object-oriented design, whereas models correspond to classes implementing
these interfaces. However, the weaker requirements of concepts increase
composability and allow easier integration of different software libraries.
Examples for successful generic libraries are Matrix Template Library [40],
Boost [7], and Intel’s Threading Building Blocks [33].

Chapter 5

Software Architecture

In this chapter we introduce the RTfact generic ray tracing library. We will
first present the basic architecture of library and then we will describe the
individual component categories and their interfaces.

The generic programming paradigms match the goals of RTfact well
– C++ templates provide abstraction and composability while retaining
the opportunity for optimal performance and compiler optimization. This
implicates that we can achieve fine abstraction granularity, yet delivering
the performance of hand-tuned implementations.

RTfact provides a set of generic packet data containers for convenient
and efficient SIMD computation. Such low-level abstractions will become
even more important, as future hardware will support 8-wide [13] and 16-
wide [39] SIMD operations, which will become even more relevant for com-
putationally demanding applications, such as ray tracing.

The algorithms in RTfact operate entirely on packet data, in order to
take full advantage of modern packet ray tracing techniques. Packet con-
cepts provide a common interface independent of the size and internal orga-
nization of the packet. The algorithms can operate on packets of any size,
and the packet size is simply a template parameter. As a result, algorithms
can handle packets of different sizes simultaneously and can have manually
specialized versions for certain sizes, which are automatically resolved and
optimized by the compiler.

Our general design objectives are to decouple algorithms from data
representation and to separate rendering from ray tracing and scene manage-
ment. RTfact consists of five main groups of components: SIMD primitives
(Section 5.1), ray tracing (Section 5.2), structure building, scene manage-
ment (Section 5.3), and rendering (Section 5.4).

Figure 5.1 illustrates the basic structure of RTfact. The application
has direct access to the scene management, acceleration structure building,
and ray tracing components. It can use the ray tracing components for
rendering or custom tasks, such as collision detection or object interaction.

39

40 CHAPTER 5. SOFTWARE ARCHITECTURE

Ray tracing Scene
management

Rendering Building

Ray tracing

SIMD primitives

Application or API
Multi-threading

Figure 5.1: The multi-layer architecture of RTfact. The SIMD primitives form the
basis for other generic components which are layered on top. Scene management and
rendering are independent from each other and are connected through the ray tracing
components. Thread management can be layered on top of the core components, or
integrated into the application, which itself can be an API backend.

The components of the library are thread-aware but do not provide any
thread management functionality, as this can be very application-specific.

5.1 SIMD Primitives

The basis of all algorithms and data structures in RTfact is formed by a
collection of generic types for SIMD computation. These packets, as we will
call them, are compile-time fixed-sized data containers and form the basic
arithmetic types of the library, along with build-in types like float, integer,
etc. We define four basic packet types, all parameterized by size.

Basic Packet

template<unsigned int taSize, class tValue>
class Packet;

Packet is an ordered set of values. On SSE-compatible architectures, tValue
can only be float or int.

Three-component Vector

template<unsigned int taSize>
class Vec3f;

Vec3f is a three-component float vector packet with a structure-of-packets
layout.

5.1. SIMD PRIMITIVES 41

Packet Mask

template<unsigned int taSize>
class PacketMask;

PacketMask is an ordered set of booleans. It stores the result of a comparison
operation between two Packets or Vec3fs, and defines a conditional blend
operation, which blends two Packets or Vec3fs according to the the stored
mask.

Bit Mask

template<unsigned int taSize>
class BitMask;

BitMask is an ordered set of bits.

RTfact’s Packet, Vec3f, and PacketMask types resemble the standart
scalar types used in computer graphics – float, int, Vec3f, and bool, but
in a packet context. In this context, these scalar types are special cases
of the packets, i.e. Packet<1,float> is a synonym for float. BitMask is a
compact boolean value container, which serves mostly for efficient condition
evaluation and code branching.

All four classes simultaneously model three concepts, which provide a
unified interface independent of the packet size:
• The Value<Type> concept considers the packet a single entity and de-

fines all arithmetic operations defined on Type (addition, multiplica-
tion, bit-wise AND, etc.). These operations are applied component-
wise to all values in the packet.

• ValueContainer<Type> defines indexing operations for accessing the
individual values stored in the packet.

• ContainerContainer<PacketType> treats a packet as a container of
sub-containers and defines indexing operators for accessing them. Sub-
container are of type PacketType with a size depending on the size of
the parent container and the SIMD width of the underlying architec-
ture.

Packets are internally implemented as arrays of native SIMD vectors.
On SSE-compatible architectures, the sub-containers of 1- and 4-sized pack-
ets are the packets themselves, whereas for larger packets this size is 4.

As packets of different sizes are actually different C++ types, they are
subject to specialization. Our implementation has specializations for packets
of size 1 and 4. The most notable is the specialization for Vec3f<1>, which
is internally implemented in SSE. These peculiarities are well hidden behind

42 CHAPTER 5. SOFTWARE ARCHITECTURE

Packet<1,T>

v0

T

Vec3f<4>

Packet<4,float>

Packet<N,T>

v0 v1 v2 v3
... vN-4 vN-3 vN-2 vN-1

x0 x1 x2 x3

Packet<4,float>

y0 y1 y2 y3

Packet<4,float>

z0 z1 z2 z3

Vec3f<N>

Vec3f<4>

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

yN-4 yN-3 yN-2 yN-1

zN-4 zN-1 zN-2 zN-1

Packet<4,T>

SSEVec<T>

v0 v1 v2 v3

Packet<4,T>

PacketMask<1>

m0

int

PacketMask<N>

m0 m1 m2 m3
... mN-4 mN-3 mN-2 mN-1

PacketMask<4>

SSEint

m0 m1 m2 m3

PacketMask<4>

BitMask<1>

m0

int32

BitMask<N>

m0 m1 .. m63
... mN-2 mN-1 0..0

BitMask<2-32>

int32 int64

m0 m1..mN 0..0

Vec3f<1>

xN-4 xN-3 xN-2 xN-1

...

Packet<4,float>

x0 y0 z0 *

Figure 5.2: Data layout of packet primitives for SSE-compatible architectures. Packet,
Vec3f, and PacketMask have specializations for sizes 1 and the architecture’s SIMD
width (in this case 4), for which the only sub-container is defined to be the packet
itself. The generic implementations of the these packets can have size, which is a
multiple of 4, and store 4-sized packets as subcontainers. Vec3f<1> internally uses an
SSE vector for efficiency. BitMask implements a storage-efficient mask and uses built-in
C++ types. BitMasks can have arbitrary size, and use specializations for sizes less than
32.

the three main concepts, but specialized versions of algorithms can take
advantage of the additional functionality and internal layout of specialized
packets. Figure 5.2 illustrates the data layout of the generic and specialized
versions of the packet types.

All four packet classes model each of the three concepts, thus they
have a three-fold nature. However, sequences of arithmetic operations may
perform quite differently in each context, depending on the packet size and
the amount of operations.

Consider the example illustrated in Listing 5.1, where the same se-
quence of operations is applied on the same data in three different ways. In
the the scalar-like style of applying the operations, each arithmetic opera-
tion will be sequentially applied on the whole packets. Although the most

5.1. SIMD PRIMITIVES 43

// specialized packets have convenient constructors
Vec3f<1> v1(0.1, 0.2, 0.3);
Packet<4, float> p4(1, 2, 3, 4);

// shuffling (defined only for 4−sized packets)
// in this example p4s will have a value (1, 1, 2, 4)
Packet<4, float> p4s = p4.shuffle<0, 0, 1, 3>();

// replication of values (i.e. 1−sized packets)
Vec3f<4> v4 = Vec3f<4>::replicate(v1);

// sub−container replication (shown for 64−sized packets)
Vec3f<64> dir = Vec3f<64>::replicate(v4);

Vec3f<64> color, offset = ..., normal = ...;
Packet<64, float> dn;
PacketMask<64> mask;
BitMask<64> bitMask;

// scalar−like packet operations (Value concept);
// inefficient for a sequence of operations on large packets
dn = Dot(dir + offset, normal);
mask = (dn > Packet<64, float>::C_0());
color = mask.blend(Vec3f<64>::C_1_0_0(), // red constant

Vec3f<64>::C_0_0_0()); // black constant
bitMask = mask.getBitMask();

// component−wise packet operations (ValueContainer concept);
// does not utilize SIMD units
for(int i = 0; i < 64; ++i)
{
dn[i] = Dot(dir[i] + offset[i], normal[i]);
mask[i] = (dn[i] > 0);
color.set(i, mask[i] ? Vec3f<1>::C_1_0_0(),

Vec3f<1>::C_0_0_0());
bitMask.set(i, mask[i]);

}

// container−wise packet operations (ContainerContainer concept);
// efficient for arithmetic operations on packets of all sizes
for(int i = 0; i < Packet<64, float>::CONTAINER_COUNT; ++i)
{
dn(i) = Dot(dir(i) + offset(i), normal(i));
mask(i) = (dn(i) > Packet<64,float>::Container::C_0());
color(i) = mask(i).blend(Vec3f<64>::Container::C_1_0_0(),

Vec3f<64>::Container::C_0_0_0());
bitMask.setContainer(i, mask(i).getBitMask());

}

Listing 5.1: SIMD computation with packets. Most binary operations (such as addi-
tion) can be performed in three different ways.

44 CHAPTER 5. SOFTWARE ARCHITECTURE

simple and intuitive, this is not the most efficient way of applying the oper-
ations in this particular case. Because the packets are large, they cannot fit
into the CPU registers. Thus, each peace of data in a packet will be read
from memory and written back many times, and will never be available in
a register for the next operation. This will result in lower CPU utilization
and a lot of memory bandwidth, and efficiency tends to decrease with larger
packets.

The component-wise style of applying sequential operations can be
more efficient for large packets than the scalar-like style, as it will keep
the result from each operation in a CPU register, ready to be used for the
next operation. However, it will not utilize the SIMD units at all, as it
only performs scalar arithmetic. Therefore, such approach does not scale to
larger SIMD units.

The most efficient way of applying sequential arithmetic operations
on packets is the container-wise style, illustrated in Listing 5.1. It exhibits
both lower memory bandwidth requirements and high SIMD utilization, as
it executes all operations in parallel on a chunk of data sequentially. This is
why most algorithms operate on the ContainerContainer concept.

As a rule of thumb, the ContainerContainer concept should be used
whenever possible. It performs efficiently for all arithmetic operations, even
for packets of size 1 and 4 – the for loops for such packets will have only
one iteration, which is known at compile time and thus it will be optimized
out by most compilers. The ValueContainer concept is useful for accessing
individual values of packets incoherently. For example, iterating over all ele-
ments in a packet is currently the only way of simulating scatter and gather
memory operations, as they are not supported by the SSE instruction set.
The Value concept is still useful for performing single arithmetic operations,
as they internally perform ContainerContainer-style iterations.

While our current implementation supports SSE only, the concepts
themselves do not have assumptions or restrictions on the instruction set
or the SIMD width. Thus, support for the Intel AVX [13] instruction set
can be easily added. In fact, such abstractions over native SIMD operations
can greatly improve portability – when adding support for wider SIMD
operations, updates are needed only for code using horizontal operations
currently defined only for 4-sized packets, such as shuffling. Most of the
algorithms in RTfact, however, are written entirely in terms of the three
basic concepts and will thus require no modifications at all.

5.1.1 Ray Packets

RTfact does not distinguish between individual rays and ray packets. Rays
are simply packets aggregating other packets (see Listing 5.2). Thus, a single
ray is simply a ray packet of size 1.

Template instantiation adds two desirable properties to ray packets.

5.2. RAY TRACING COMPONENTS 45

template<unsigned int taSize>
struct RayPacket
{
Vec3f<taSize> org; // ray origins
Vec3f<taSize> dir; // ray directions
Packet<taSize, float> tMin; // minimum clipping distances along the rays
Packet<taSize, float> tMax; // maximum clipping distances along the rays

};

Listing 5.2: In RTfact, single rays and packets of rays are represented with the same
generic data structure.

First, memory for ray packets is allocated at compile time. This is relevant
to performance, as many rays are created and destroyed each frame. Second,
ray packets of different sizes can exist simultaneously within the system –
a feature missing in other ray tracing systems. This allows us to efficiently
trace the same or different acceleration structures with packets of different
sizes.

Ray packets can be extended to carry information bout active rays,
corner rays, and bounding planes, which enable efficient frustum-based ac-
celeration structure traversal and primitive intersection. However, we do not
store intersection data within ray packets, as intersection structure types are
defined by intersectors (see Section 5.2.2).

5.2 Ray Tracing Components

Packets provide us with the basis on which we can build generic ray tracing
algorithms. RTfact makes a clear distinction between data structures and
algorithms that operate on them. Building and traversing an acceleration
structure are independent from its actual type and implementation, as long
as it provides the necessary functionality for storing and accessing data. This
allows us to apply different algorithms on the same or different acceleration
structures.

5.2.1 Primitives and Acceleration Structures

In RTfact, all ray tracing structures model the very general Primitive con-
cept, which only defines functionality for getting material ID. These include
geometric primitives, compound primitives, and acceleration structures.

In contract to PBRT, Primitives are simple data structures and do
not directly provide intersection functionality, which is instead provided by
Intersectors. For applications that require simultaneous support for differ-
ent primitives, an ID to a run-time polymorphic intersector can be stored
with each structure. This allows us to avoid virtual function calls completely

46 CHAPTER 5. SOFTWARE ARCHITECTURE

or add them only when required and at the appropriate granularity. For
example, we allow different polymorphic intersectors to be attached to dif-
ferent geometric primitives at run time. However, this can also be applied at
a coarser granularity, e.g. assign different intersectors to acceleration struc-
ture instances, while fixing the intersectors for all triangles either inside each
structure or globally. This allows us to have fine control over name binding
and thus to the run-time infrastructural overhead.

We also set acceleration structures to be independent of the types of
objects they aggregate. Such types can be not only geometric primitives,
but any other type (e.g. Photon). This also allows acceleration structures
of the same or different types to be nested.

Listing 5.3 shows a concept for a kd-tree. The concept only defines
building and traversing functionality and completely hides the details about
internal node representation, and provides an iterator interface similar to
STL containers. It also does not define any creation and initialization func-
tionality, as this is specific to the implementation of the structure and is
controlled by the application.

template<class tElement>
class KdTree : public Primitive
{
public:

class NodeIterator;
class ElementIterator;

// interface for building
void createInnerNode(NodeIterator node,

int axis, float splitValue);
template<class tIterator>
void createLeaf(NodeIterator leaf, const BBox& bounds,

tIterator begin, tIterator end);

// interface for traversal
NodeIterator getRoot() const;
NodeIterator getLeftChild(NodeIterator node) const;
NodeIterator getRightChild(NodeIterator node) const;
int gesplitAxis(NodeIterator node) const;
float gesplitValue(NodeIterator node) const;
std::pair<ElementIterator, ElementIterator>
getElements(NodeIterator leaf) const;

};

Listing 5.3: A psudosignature of a generic kd-tree working with STL-like iterators. A
BVH concept would be similar.

5.2. RAY TRACING COMPONENTS 47

5.2.2 Intersectors

Given a ray packet and a primitive, Intersectors return an intersection
structure. Similarly to PBRT, we design primitive and acceleration structure
intersectors to have a unified interface, which allows intersectors to be nested
consistently with the acceleration structures. This gives us the ability to
compose and traverse arbitrary deep acceleration structure hierarchies as
easy as combining templates:

// data structure
BVH<KdTree<Triangle>> hierarchy;
// corresponding intersector
BVHIntersector<KdTreeIntersector<
SimpleTriangleIntersector>> intersector;

In order to ensure correct nesting, every intersector defines the type of the
returned intersection structure. Primitive intersectors return structures con-
taining references to primitives and intersection data. Acceleration structure
intersectors, such as the KdTreeIntersector, simply reuse the intersection
type of the nested intersector. Intersection structures of instance intersec-
tors would inherit the nested intersection structure and additionally store a
reference to the intersected instance.

Some applications require tighter integration of acceleration structures
and primitives. For example, a kd-tree for subdivision surfaces might incor-
porate the geometry representation. In such case, the acceleration structure
and primitive intersectors can also be merged accordingly, i.e. the kd-tree
traverser will also perform triangle intersection, as triangles may be gener-
ated on the fly. In order to facilitate component reuse, our design encourages
but does not require separation of intersection algorithms.

Intersectors implement ray tracing algorithms and this is where generic
programming with templates can show its greatest potential. We add two
more template parameters to intersection routines (along with the size of
the packet), which enable special case code. These parameters are flags for
packets with common origin and what intersection data has to be computed,
e.g. whether intersection normals or partial derivatives are needed. As a
result, we can bring component reuse to an extreme level by allowing an
intersector to have a single generic implementation. The intersection routine
can be independent of the implementation of the acceleration structure, the
type of objects it aggregates, the nature of the ray packet, its size and ray
origin properties, and the shading data needed. Listing 5.4 illustrates such
a routine for a kd-tree intersector.

template<class tElemIsect> // nested element intersector
template<int taIntersDataMask, // intersection data needed

bool taCommonOrg, // common ray origin?
unsigned int taSize, // size of the ray packet
class tKdTree> // models the KdTree concept

void KdTreeIntersector<ElemIsect>::intersect(

48 CHAPTER 5. SOFTWARE ARCHITECTURE

RayPacket<taSize>& rayPacket, // the actual rays
tKdTree& tree, // the actual kd−tree
tElemIsect::Intersection<taSize>& r) // intersection defined

{ // by the nested intersector
typedef BitMask<taSize> t_BitMask;
typedef Packet<taSize, float> t_Packet;
typedef typename t_Packet::Container t_PContainer;
/∗ omitted: initialize traversal ∗/
tKdTree::NodeIterator node = tree.getRoot();
int splitDim; // split dimension (3 means leaf node)
while(true) {
while((splitDim = tree.gesplitAxis(node)) != 3) {
t_PContainer splitValue =
t_PContainer::replicate(tree.gesplitValue(node));

t_BitMask nearChildMask, farChildMask;
t_PContainer splitFactor;

if(taCommonOrg) // compile−time constant decision
splitFactor = splitValue − rayPacket.org(0).get(splitDimension);

for(int i = 0; i < RayPacket<taSize>::CONTAINER_COUNT; ++i) {
if(!taCommonOrg) // compile−time constant decision
splitFactor = splitValue − rayPacket.org(i).get(splitDimension);

const t_PContainer split = splitFactor ∗
rayPacket.invDir(i).get(splitDimension);

nearChildMask.setCont(i,(split(i) > currentTMax(i)).getIntMask());
farChildMask.setCont(i,(currentTMin(i) > split(i)).getIntMask());

}
/∗omitted: get first child from masks and descend ∗/

}
// a leaf node has been reached
std::pair<tKdTree::ElementIterator, tKdTree::ElementIterator>
elemIterators = aTree.getElements(currentIterator);

if(elemIterators.first != elemIterators.second) {
do { //invoke nested intersector for leaf elements
mIntersector.intersect<taIntersDataMask, commonOrg>(
rayPacket, ∗(elemIterators.first++), r);

} while(elemIterators.first != elemIterators.second);
//check whether active rays found intersections
terminationMask |= rayActiveMask &
(result.dist <= currentTMax).getBitMask();

if(terminationMask.isTrue()) return;
}
/∗ omitted: pop a node from the stack and mask rays∗/

}
}

Listing 5.4: A generic kd-tree traversal routine. Only the kd-tree and ray data are
passed at run-time. All other parameters are known at compile time.

5.3. SCENEMANAGEMENTANDACCELERATION STRUCTURE BUILDING49

5.3 Scene Management and Acceleration Struc-
ture Building

As with acceleration structures and intersection algorithms, the type and
organization of the scene data can vary among applications. We define
a Scene concept which provides basic functionality for querying materials
and intersectors. The BasicScene concept in addition defines geometry and
light source lists, while SceneGraph provides functionality for managing scene
hierarchies.

Acceleration structures are built by Builders. They operate on bound-
ing boxes and can thus build structures over any object type that has bounds.
During building, object bounds can be clipped to nodes’ bounds using either
a provided object type-specific clipper or a simple default box splitter.

As ray intersection algorithms do not directly operate on scenes and
are separated from acceleration structure building, scene and acceleration
structure management is entirely independent from ray tracing. This allows
tighter coupling of scenes and acceleration structure building. For example,
it has been shown that acceleration structures can be robustly built in linear
time from scene hierarchies [16]. In such case, a builder can be specialized for
a particular scene type and exploit its structured information to accelerate
building.

5.4 Rendering Components

In RTfact, rendering is layered on top of ray tracing and is independent from
scene management. The application should make the connection between
the scene data and rendering components. It shall constructing acceleration
structures and pass them along with ray tracing algorithms to a suitably
configured rendering pipeline.

The clear separation of ray tracing and rendering functionality allows
the application to use the same acceleration structures and intersection algo-
rithms both for rendering and for other tasks too. For example, ray tracing
can be used for collision detection in dynamic environments and acoustic
simulation [36]. Object interaction can be also facilitated by ray tracing
– when a user clicks on a pixel on the screen, a ray can be traced to de-
tect which object the user wants to select. Thus, no special acceleration
structures and algorithms need to be developed for such tasks.

5.4.1 Shading Model

Most rendering systems employ an imperative surface shading model – shaders
are attached to geometry and are executed whenever a ray hits a particular
surface. They consist of imperative code that fully defines what computa-
tions are performed at a hit point. This approach has the benefit of being

50 CHAPTER 5. SOFTWARE ARCHITECTURE

class Material {
public:
template<unsigned int taSize> // packet size
Vec3f<taSize> emittance(
Vec3f<taSize>& w_o, // outgoing direction
SurfaceIntersection<taSize>& sh); // hit point,normal,etc.

template<unsigned int taSize, // packet size
unsigned int taBSDFType> // BSDF parts to evaluate

Vec3f<taSize> evaluate(
Vec3f<taSize>& w_o, // outgoing direction
Vec3f<taSize>& w_i, // incoming direction
SurfaceIntersection<taSize>& sh); // hit point,normal,etc.

template<unsigned int taSize, // packet size
unsigned int taBSDFType> // BSDF parts to sample

Vec3f<taSize> sample(
Vec3f<taSize>& w_o, // outgoing direction
Vec3f<taSize>& w_iOutput, // incoming direction
SurfaceIntersection<taSize>& sh, // hit point,normal,etc.
Packet<taSize, float>& pdfOutput); // sample probability

/∗ omitted: evaluate() and sample() variants ∗/
};

Listing 5.5: A concept for physically-based materials. Materials represent surface
reflection models and are independent from ray tracing.

simple to implement and gives freedom – shaders can shade surfaces in ar-
bitrary ways.

Unfortunately, imperative surface shading has two major drawbacks.
First, it reduces flexibility – one needs to reimplement a particular re-
flectance model for each light simulation algorithm and vice versa. Fur-
thermore, in a packet-based framework, this surface shading model by de-
sign reduces exploitation of coherence for secondary rays, as each shader
independently handles rays hitting the surface it is attached to. As a con-
sequence, coherent secondary rays emerging from different surfaces cannot
be traced together.

RTfact supports both traditional imperative shaders as well as a declar-
ative physically-based shading model. Similarly to PBRT, we define surface
reflection models as Materials and light integration algorithms as Integrators.
Materials represent BSDFs and can be evaluated, sampled, and its emission
queried, while Light sources provide an interface for sampling illumination
directions and light rays. Evaluation and sampling of materials can be per-
formed on different BSDFs parts (transmission, reflection, specular, etc.)
by optionally providing sample values and obtaining sampling probabilities
(Listing 5.5). Listing 5.6 illustrates the Integrator concept.

5.4. RENDERING COMPONENTS 51

class Integrator {
public:
template<int taSize> struct Result;
template<int taSize, class tSample, class tScene,

class tPrimitive, class tIntersector>
Result<taSize> eval(
tSample& sample // image sample
RayPacket<taSize>& rayPacket, // initial ray packet
tPrimitive& primitive, // top−level primitive
tIntersector& intersector, // top−level intersector
tScene& scene); // shading scene data

};

Listing 5.6: Given a ray packet, the integrator evaluates the radiance flowing back
along the rays. The integrator is also responsible for shooting all rays. Specific imple-
mentations are similar to PBRT’s.

In the context of generic programming, integrators are the algorithms
that perform lighting simulation, while materials and light sources are the
data structures that provide the appearance of the objects in a scene. An
evident consequence of this separation is that all rays during rendering are
shot at a central place, namely the light integration algorithm. This gives
integrators the potential to shoot and regroup rays in arbitrary fashion.
In our current implementation integrators mask out irrelevant rays when
sampling materials and collect the sampled directions. WhittedIntegrator,
for example, traces separate packets for reflection, refraction, and shadow
rays, which eventually emerge from different surfaces.

For applications that require simultaneous support for different ma-
terial and light source types at run-time, we provide a transparent virtual
function mechanism between the Material and Light concepts and their
models. Custom materials have to implement the non-virtual template func-
tions defined by the concepts, and include a special header file in their class
definition. This header file automatically generates virtual functions for
each possible combination of the template parameters of each function in
the concept and includes them in the class body. When a template func-
tion of Material is called, it will divert the call to a virtual function which
is bound to a corresponding auto-generated virtual function in the custom
material. Finally, this function will call the generic version with the ap-
propriate template parameters. Such infrastructure is necessary, because
the C++ language does not currently support template virtual functions.
Although this may seem like a big overhead, in practice all non-virtual func-
tions are inlined by the compiler, resulting in no additional overhead except
for the one introduced by virtual functions. Note also, that the number of
generated virtual functions can grow exponentially with the possible combi-
nations of template parameters. This will introduce memory overhead, but

52 CHAPTER 5. SOFTWARE ARCHITECTURE

class Texture
{
public:

template<uint taSize>
void sample(SurfaceIntersection<taSize>& aIntersection,

implementation−defined& oResult);
};

Listing 5.7: Texture is an algorithm concept for querying material properties. The
returned result is implementation-defined and is usually a float Packet or a Vec3f.

in practice it is negligible, as the number of materials in the scene is usually
much smaller than the number of geometric primitives.

While the decoupled shading model can require more virtual function
calls than the traditional model for material evaluation and sampling, this
overhead is overcompensated by the ability to trace coherent secondary rays
together.

The traditional shading model is implemented by an integrator that
shoots primary rays and calls shaders for the hit points. Individual shaders
then perform the remaining computations themselves.

5.4.2 Texturing

Similarly to PBRT, materials in RTfact always query textures for
properties which may vary along surfaces. Texture is a basic algorithm con-
cept for querying intersection-dependent data (see Listing 5.7). In contrast
to PBRT, material classes are parameterized by the types of the textures
they use. For example, LambertianMaterial is parameterized by the types
of reflectance and emission textures:

template<class tReflectanceTexture, class tEmissionTexture>
class LambertianMaterial
{
tReflectanceTexture mReflectanceTexture;
tEmissionTexture mEmissionTexture;
...

};

The most basic type of texture is the Float3ConstantTexture. It
always returns the same value, independent of the intersection data. The
Float3Texture2D concept represents a two-dimensional texture. Its models
can either look up the return value in an image or generate it proceduraly.
All texturing functionality is hidden behind the basic Texture, and is thus
completely independent from materials.

Because the types of the textures are resolved at compile time, all
code can be optimized by the compiler. Thus, Float3ConstantTexture, for

5.5. RENDERING PIPELINES 53

example, is as efficient during rendering as a hard-coded value in the mate-
rial.

5.5 Rendering Pipelines

The Renderer is a top-level rendering concept which defines basic functional-
ity for processing image tiles. It connects different components in a rendering
pipeline.

Listing 5.8 shows an example renderer, which defines a basic ray trac-
ing pipeline, which works as follows. Samples are queried from the pixel
sampler, and then are given to the camera to generate a primary ray packet
from them. The ray packet is passed to the integrator, which returns the
radiance flowing along the rays in the packet. Finally the original pixel sam-
ple and the result from the integrator is given back to the sampler, which
writes the result to the framebuffer.

This renderer makes little assumptions about how different compo-

template<class tPixelSampler, class tIntegrator>
class RayTracingRenderer : public Renderer
{
tPixelSampler mSampler;
tIntegrator mIntegrator;

public:
template<int taSize, // the size of primary ray packets

class tCamera, class tScene, class tPrimitive,
class tIntersector, class tFramebuffer>

void render(
tScene& scene, tCamera& camera,
tFramebuffer& framebuffer, ImageClipRegion& clip,
tPrimitive& primitive, tIntersector& intersector)

{
tPixelSampler::Sample<taSize> sample;
tPixelSampler::Iterator<taSize> it =
mSampler.getIterator<taSize>(clip);

while(it.getNextSample(sample))
{
RayPacket<taSize> rays = camera.genRay(sample);
Integrator::Result<taSize> result = mIntegrator.eval(
sample, rays, primitive, intersector, scene);

mSampler.writeResult(sample, result, framebuffer);
}

}
/∗ omitted: preprocess() function for pre−integration∗/

};

Listing 5.8: A ray tracing renderer concept. The pipeline defines only basic control
flow and is completely independent from the algorithms and data structures used for
tracing rays and shading.

54 CHAPTER 5. SOFTWARE ARCHITECTURE

nents are functionally coupled and what types of data they communicate.
For example, in addition to image samples, the pixel sampler can provide
light integration samples to the integrator by defining its sample type ac-
cordingly. The integrator can in turn specialize for this specific type and
can also return a radiance type that additionally contains depth and opacity
values.

Integrators can be also specialized for specific acceleration structures
and intersection algorithms. For example a volume integrator can be tightly
coupled with a grid acceleration structure, where shading of rays is per-
formed during grid traversal. This coupling, however, is completely trans-
parent to the pipeline, as renderers operate on basic concepts only.

We should note at this point that our template infrastructure does not
prohibit virtual polymorphism. For applications that require simultaneous
support for different algorithms and data structures, components can have
internal virtual mechanisms to enable run-time polymorphic behavior. For
example, the Framebuffer concept, which defines functionality for storing
radiance values, can be modeled by a virtual class that selects at run-time
whether values are written to a network or a screen buffer. The same holds
for intersectors supporting multiple geometric primitives. This flexibility
allows us to only pay for the overhead when it is really needed.

Chapter 6

Applications

RTfact is a source code library and can be used in a similar way to other
generic libraries, such as STL. Typically, the user includes the desired RTfact
headers in his or her application source files and combines and instantiates
the chosen algorithms and data structures in the most suitable way. The
components of the library are designed to be highly configurable and exten-
sible, so that the user can choose the appropriate granularity and implement
custom functionality where needed, or even adapt components from other
libraries. For example, one might want to experiment with a new BVH
traversal algorithm and a custom material. In this case, one would only im-
plement two classes, modeling the corresponding concepts, and instantiate
with them the desired data structures and algorithms the RTfact library
already provides.

We have applied RTfact to several visualization tasks, such as sur-
face, point-based, and direct volume rendering. For all these applications
we have used the RayTracingRenderer described in the previous section.
Creating custom rendering configurations then boils down to combining dif-
ferent acceleration structures and intersection algorithms, and instantiating
the renderer with them.

In the following sections we will show how RTfact can be applied to
the above mentioned visualization tasks. We will focus on the performance
achieved in surface ray tracing, while demonstrating how the infrastructure
can be applied for the other two tasks.

6.1 Surface Ray Tracing

RTfact was originally inspired by the recent advances in surface ray tracing.
Modern intersection algorithms enable interactive visualization of complex
geometry, and can achieve performance of over 10 million rays per second
on a single CPU core on scenes consisting of several million polygons.

Unfortunately, there has been a gap between the performance reported

55

56 CHAPTER 6. APPLICATIONS

OpenGLFrameBuffer framebuffer;
ImageClipRegion clipRegion;
PinholeCamera camera;
BasicScene<Triangle> scene;
BVH<Triangle> bvh;
BVHIntersector<PlueckerTriangleIntersector> bvhIntersector;
SAHBVHBuilder builder;
RayTracingRenderer<PixelCenterSampler,

DirectIlluminationIntegrator> renderer;

// initialization omitted
...

builder.build(bvh, scene.primitives.begin(), scene.primitives.end());

renderer.render<256>(scene, camera, framebuffer, clipRegion,
bvh, bvhIntersector);

Listing 6.1: Using RTfact for surface ray tracing. Independent library components
are instantiated and combined by the application according to its specific needs.

in research papers and the one achieved by more general purpose systems.
Our goal is to achieve the performance of single-purpose hand-optimized
implementations, while providing the same or even greater flexibility than
other practical ray tracing systems.

Listing 6.1 shows an example usage of RTfact for surface ray tracing.
The application usually creates its own framebuffer, depending on what
subsystem is used for image display. After that it populates the scene and
instantiates the desired ray tracing algorithms and builds the acceleration
structures. Finally, the render method of the renderer is called to start the
computations for the frame.

In the example shown in Listing 6.1, we have chosen to use a BVH,
built using a SAH-based algorithm. Ray intersection is performed by the
intersector resulting from the combination of a BVH traverser and a Pluecker
triangle intersector. The renderer is configured to trace one ray per pixel and
compute direct illumination. All structures and algorithms are passed to the
render function with an additional parameter specifying the ray packet size.

At the point of invocation of the renderer’s render method, the com-
piler will start resolving type dependencies and instantiating templates. The
result will be an automatically generated specialized version of the render

method for the given template parameters.

Specializations of algorithms will be also automatically resolved. For
example, if the BVHIntersector’s intersect method has been specialized for
256-sized ray packets, it will be chosen by the compiler and embedded into
the final code produced, resulting in no run-time overhead.

Other interactive ray tracers, such as Arauna [6] and Manta, have

6.1. SURFACE RAY TRACING 57

Sponza Conference Soda Hall

OpenRT K 4.5 4.2 5.1

Manta K 4.7 4.2 5.4

RTfact K 6.8 6.4 6.5

Wald et al. [47] B n/a 9.3 11.1

Manta B 4.5 4.8 5.6

Arauna B 13.2 11.3 n/a

RTfact B 13.1 11.6 11.4

Table 6.1: Ray tracing performance in frames per second for a 10242 image with simple
shading of our implementation in comparison to other interactive systems. All results
except for [47] were gathered on the single core of a mobile 2.6GHz Core 2 processor
using the same or comparable data structures, intersection algorithms, and view points.
K denotes kd-tree with packet traversal as proposed by [46], while B denotes BVH
packet traversal [47].

separate code paths for single rays or for SIMD processing. However, tem-
plate instantiation allows special case code to be put at the appropriate
granularity, without the need of separate code paths for the entire program.

Figure 6.1 shows some images rendered at a 1024 × 1024 resolution
with configurations similar to the one in Listing 6.1. The Sponza scene
has about 70,000 triangles and uses one point light source, textures, and
interpolated shading normals. The Conference scene has roughly 280,000
polygons and uses two point light sources and has a mirror on one of the
walls. The Soda Hall scene consists of 2.2 million triangles and is rendered
with simple diffuse shading. All scenes are rendered interactively on a mobile
Core 2 Duo 2.6Ghz processor.

6.1.1 Performance

We have measured the raw performance of RTfact and compared it to other
interactive systems. Because a direct fair comparison is very difficult to
achieve due to various differences in systems, we have applied the same
simplified conditions on all systems and measure the time for ray casting
and simple shading only.

As it can be seen from Table 6.1, the performance of RTfact matches
the one of Arauna [6]. Arauna is to our knowledge the fastest open source ray
tracer currently available, and uses hard-coded acceleration structures and
SSE algorithms that are manually tuned for optimal throughput. RTfact
is also consistently faster under the same configuration of algorithms and
structures than the other more versatile systems, even though it provides
greater flexibility. Since components in our system are configured at compile
time, the compiler can enable all optimizations and produce optimal code
for each combination of algorithms and data structures.

58 CHAPTER 6. APPLICATIONS

Figure 6.1: Top: Sponza with one light source (8.4 fps). Left: Conference with a
mirror and two light sources (8 fps). Right: Soda Hall with simple shading (22 fps).

6.2. POINT-BASED RAY TRACING 59

We have tested RTfact on various operating systems (Windows, Linux,
and MacOS) and compilers (MSVC, Intel, and GCC). Surprisingly, modern
compilers have matured enough to optimize well all the templates in our
code. We achieved best performance with the Intel C++ Compiler on all
systems. Inspection of the assembly output showed that it managed to best
optimize special case code and loops, making assembly code almost identical
to the one produced from hand-tuned C++ code.

6.1.2 Shading Model Improvements

To compare the efficiency of the decoupled and the traditional surface shad-
ing models, we have counted the total number of traversed nodes and inter-
section tests for shadow rays over an entire frame using either models. We
have run the tests on the Conference scene with 36 different materials
visible (see Figure 6.1 left) most of which are hit by very few rays. Still,
the traditional shading model resulted in traversing about 40% more kd-tree
nodes and performing 25% more intersection tests for the shadow rays.

6.2 Point-Based Ray Tracing

We have also applied RTfact for interactive ray tracing of point clouds.
We have implemented an optimized version of the algorithm proposed by
Katov [19]. The algorithm directly visualizes points without hole filling, and
employs a generic level-of-detail kd-tree, which stores primitives at multiple
levels in the hierarchy.

Listing 6.2 illustrates an example how to setup a point-based ray trac-
ing renderer. The structure of the code is mostly the same as for surface rat
tracing, but uses a different acceleration structure, intersector, and builder.
Also, the ray packet size used for rendering is set to 16. As discussed in the
previous section, these two different rendering configurations can co-exist in
the system and even render to the same framebuffer.

Figure 6.2 shows two images of ray traced point clouds. The David
model consists of approximately 3.7 million points, while the Dragon model
has 3.6 million points. On a mobile Core 2 Duo 2.6GHz processor at a
1024× 1024 resolution, the scenes render at 6 fps and 7 fps, respectively.

6.3 Direct Volume Rendering

As a proof of concept, we have also applied RTfact for direct volume ren-
dering of CT scanned datasets. The implemented algorithm is a brute-force
single-ray regular grid traverser.

As can be seen from Listing 6.2, direct volume rendering also fits
nicely into the rendering pipeline that we have used for surface and point-

60 CHAPTER 6. APPLICATIONS

OpenGLFrameBuffer framebuffer;
ImageClipRegion clipRegion;
PinholeCamera camera;
// point−based ray tracing setup
BasicScene<Point> scene;
LoDKdTree<Point> kdtree;
LoDKdTreeIntersector<PointIntersector> lodKdTreeIntersector;
LoDKdTreeBuilder builder;
LoDParams lodParams;
RayTracingRenderer<PixelCornerSampler, EyelightIntegrator> renderer;
// initialization omitted
...

builder.build(kdtree, lodParams,
scene.primitives.begin(), scene.primitives.end());

renderer.render<16>(scene, camera, framebuffer, clipRegion,
tree, lodKdTreeIntersector);

// direct volume rendering setup
BasicScene<DensityPoint> scene;
Grid3D<DensityPoint> grid;
VolumeGridIntersector gridIntersector;
Grid3DBuilder builder;
RayTracingRenderer<PixelCenterSampler, VolumeIntegrator> renderer2;
// initialization omitted
...

renderer.render<1>(scene, camera, framebuffer, clipRegion,
grid, gridIntersector);

Listing 6.2: Using RTfact for level-of-detail point-based ray tracing. The structure of
the application is the same and many of the components used for surface ray tracing
can be reused.

based ray tracing. The major difference is that a different integrator is used,
namely the VolumeIntegrator. This integrator is tightly coupled with the
Grid3Dintersector and is called at each grid traversal step to compute the
contribution of each grid cell a ray pierces. However, these details remain
transparent to the RayTracingRenderer.

Figure 6.2 shows two images rendered with the volume renderer. The
Skeleton dataset is visualized using a single-color transfer function, and
the Engine dataset uses a two-color transfer function. Both images are
rendered at a 1024× 1024 resolution, although not interactively, as the grid
traversal is not optimized and traces one ray at a time.

6.4 A Note on Parallelism

To run our test application on multi-core machines, we have used Intel’s
Threading Building Blocks (TBB) on top of the renderer to recursively split

6.4. A NOTE ON PARALLELISM 61

Figure 6.2: Top row: Point-based ray traced images with level of detail. Left: The
David model. Right: The Asian Dragon model with level of detail visualized in
false color. Bottom row: Volumetric datasets visualized using direct volume rendering.
Left: The Skeleton dataset. Right: The Engine dataset with a two-color transfer
function.

the image plane and invoke the renderer for each tile. We have run tests
on up to 16 cores and achieved near-linear scalability. Note that RTfact
optimizes for single-thread throughput, which is completely orthogonal to
multi-threaded execution. Various parallelization schemes can be applied on
top of the library for achieving maximum multi-core hardware utilization.

62 CHAPTER 6. APPLICATIONS

Chapter 7

Conclusions

In this thesis we presented RTfact – a design approach for building flex-
ible and high-performance interactive ray tracing libraries. Using generic
programming paradigms and standard C++ features, our implementation
achieves high flexibility and fine component granularity, while maintaining
the efficiency of hand-tuned code.

Instead of providing a stand-alone rendering system, RTfact follows
context-free generic design concepts and provides the building blocks for
creating custom ray tracing-based solutions. This allows components of the
library at various granularities to be used for different tasks and to be easily
integrated in custom applications. Separating ray tracing from rendering
and algorithms from data structures allows us to achieve seamless component
integration and composability not seen in prior interactive systems.

RTfact provides a SIMD abstraction layer, which constitutes the ba-
sis for generic packet-based allgorithms and enables seamless portability to
architectures with wider SIMD instruction sets.

As graphics hardware is moving toward higher programmability and
software implementations, we believe that the generic approach taken by
RTfact will map very well to more restricted development platforms such as
CUDA [25]. We achieve high performance by putting the pressure on the
compiler, thereby avoiding complex run-time control flow and overhead.

7.1 Limitations

Although we argue that the design paradigms used in RTfact provide both
flexibility and performance, we have experienced some problems with this
approach. These problems are mainly consequences of some limitations of
the C++ language.

First of all, the concepts behind the library and its code can be hard
to understand by inexperienced programmers. Object-oriented design has
been well studied, supported elegantly in almost all modern programming

63

64 CHAPTER 7. CONCLUSIONS

languages, and thus most people are familiar with it. The generic program-
ming paradigms, however, are often considered too obscured. One reason
for this is that the support for generic programming varies greatly among
languages and compilers with respect to features, performance, and ease of
use.

The C++ language provides the opportunity for achieving compile-
time flexibility and run-time performance via templates. However, tem-
plates add complications to the compiler logic, and therefore the support
for templates in the language itself has been limited in a number of ways.
For example, one of the biggest problems in the template infrastructure of
RTfact is the support for run-time polymorphism. The main reason for this
is the lack of native support for template virtual functions. For evaluating
materials and invoking shaders, we have to manually generate virtual func-
tions from template versions in the base and derived classes. This, however,
requires explicit knowledge of all possible template arguments and their com-
binations. Even worse, the number of virtual functions we have to generate
grows exponentially with the number of template parameters. We end up
generating a number of virtual functions, most of which are not called at
all. Support by the compiler to automatically detect which combinations of
template parameters are actually used and generate the appropriate virtual
functions would solve this problem.

Another problem with templates are the often too long, confusing and
unhelpful error messages in code that uses templates. Thus, developing tem-
plate code can be difficult and time consuming to develop. This is mainly a
consequence of the lack of explicit support for concepts. The C++0x revi-
sion of the C++ standard adds such support and we expect it to drastically
reduce this problem.

There are many other peculiarities of the C++ language that make
generic code hard to understand and write, such as obscure compiler hints
through special keywords and inheritance and specialization rules.

7.2 Future Work

Although RTfact is still under development, it already shows great potential.
In future, we will investigate the possibility of applying the generic design
for building GPU ray tracers and building a unified framework for hybrid
CPU-GPU rendering. In addition, we plan to integrate the library into a
virtual reality system. In order to do this, we will continue extending the
coverage of RTfact by providing for example support for collision detection
for physics simulation.

RTfact focuses on versatility, flexibility, and performance in its core
components, and its design is orthogonal to binary APIs and parallelization
schemes which could be layered on top of the library. In future, we plan

7.2. FUTURE WORK 65

to add a continuation-based multi-tasking layer on top of the library, which
will facilitate hybrid, multi-core, and distributed rendering.

We advocate generic software design as a key to flexibility and effi-
ciency, especially for computationally intensive applications, such as realtime
ray tracing. Therefore, as a long-term project, we plan to work together will
compiler developers on languages that provide seamless support for generic
programming.

66 CHAPTER 7. CONCLUSIONS

Bibliography

[1] John Amanatides and Andrew Woo. “A Fast Voxel Traversal Algo-
rithm for Ray Tracing”. In: (1978), pp. 3–10.

[2] Arthur Appel. “Some Techniques for Shading Machine Rendering of
Solids”. In: Spring Joint Computer Conference 32 (1968), pp. 37–49.

[3] Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko Friedrich.
“Ray Tracing on the CELL Processor”. In: Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing. 2006.

[4] Carsten Benthin, Ingo Wald, and Philipp Slusallek. “A Scalable Ap-
proach to Interactive Global Illumination”. In: 2003.

[5] James Bigler, Abe Stephens, and Steven G. Parker. “Design for Par-
allel Interactive Ray Tracing Systems”. In: IEEE Symposium on In-
teractive Ray Tracing (2006).

[6] Jacco Bikker. “Real-time Ray Tracing through the Eyes of a Game
Developer”. In: IEEE Symposium on Interactive Ray Tracing (2007).

[7] Boost C++ Libraries. http://www.boost.org.

[8] Nathan A. Carr, Jesse D. Hall, and John C. Hart. “The ray engine”. In:
HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. Saarbrucken, Germany: Eurograph-
ics Association, 2002, pp. 37–46.

[9] Holger Dammertz, Johannes Hanika, and Alexander Keller. “Shallow
Bounding Volume Hierarchies for Fast SIMD Ray Tracing of Incoher-
ent Rays”. In: Computer Graphics Forum (Proc. 19th Eurographics
Symposium on Rendering). 2008, pp. 1225–1234.

[10] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek.
OpenRT – A Flexible and Scalable Rendering Engine for Interactive
3D Graphics. Tech. rep. Saarland University, 2002.

[11] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek.
“The OpenRT Application Programming Interface – Towards A Com-
mon API for Interactive Ray Tracing”. In: (2003), pp. 23–31.

[12] Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Ad-
vanced Global Illumination. AK Peters Ltd, 2006. isbn: 1568813074.

67

68 BIBLIOGRAPHY

[13] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shi-
hjong Kuo. Intel AVX: New Frontiers in Performance Improvements
and Energy Efficiency.

[14] Andrew S. Glassner. An Introduction to Ray Tracing. Morgan Kauf-
mann, 1989.

[15] Johannes Günther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek.
“Realtime Ray Tracing on GPU with BVH-based Packet Traversal”.
In: Proceedings of the IEEE/Eurographics Symposium on Interactive
Ray Tracing. 2007.

[16] Warren Hunt, William R. Mark, and Don Fussell. “Fast and Lazy
Build of Acceleration Structures from Scene Hierarchies”. In: 2007
IEEE Symposium on Interactive Ray Tracing. IEEE, Sept. 2007, pp. 47–
54.

[17] Frederik W Jansen. “Data Structures for Ray Tracing”. In: (57–73),
p. 1986.

[18] Jim Kajiya. “The Rendering Equation”. In: SIGGRAPH ’86 (Proceed-
ings of the 13th annual conference on Computer graphics and interac-
tive techniques) (1986).

[19] Marin Katov. Ray Tracing of Points. 2007.

[20] Alexander Keller. “Instant Radiosity”. In: SIGGRAPH ’97 (Proceed-
ings of the 24th annual conference on Computer graphics and interac-
tive techniques) (1997).

[21] Eric Lafortune and Yves D. Willems. “Bi-directional Path Tracing”.
In: 1993.

[22] William Mark. “Future Graphics Architectures”. In: ACM Queue 6.2
(2008).

[23] David Musser and Alexander Stepanov. “Generic Programming”. In:
SSAC: Proceedings of the ACM SIGSAM International Symposium on
Symbolic and Algebraic Computation. 1989.

[24] Michael J. Muuss. “Towards Real-Time Ray-Tracing of Combinatorial
Solid Geometric Models”. In: Proceedings of BRL-CAD Symposium.
1995.

[25] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. “Scal-
able Parallel Programming with CUDA”. In: ACM Queue 6.2 (2008).
issn: 1542-7730.

[26] Steven Parker, Solomon Boulos, James Bigler, and Austin Robison.
“RTSL: A Ray Tracing Shading Language”. In: IEEE Symposium on
Interactive Ray Tracing (2007).

BIBLIOGRAPHY 69

[27] Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley, Brian
Smits, and Charles Hansen. “Interactive Ray Tracing”. In: Proceedings
of Interactive 3D Graphics. 1999.

[28] Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Elsevier Science & Technology Books, 2004.

[29] Bui Tuong Phong. “Illumination for Computer Generated Pictures”.
In: Commun. ACM 18.6 (1975), pp. 311–317. issn: 0001-0782.

[30] Pixar Animation Studios. The RenderMan Interface Specification.

[31] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek.
“Stackless KD-Tree Traversal for High Performance GPU Ray Trac-
ing”. In: Computer Graphics Forum. Vol. 26. 3. 2007.

[32] Timothy Purcell. “Ray Tracing on a Stream Processor”. Stanford Uni-
versity. PhD thesis. 2004.

[33] James Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.

[34] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. “Multi-level
Ray Rracing Algorithm”. In: SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers. Los Angeles, California: ACM Press, 2005, pp. 1176–1185.

[35] Steven M. Rubin and Turner Whitted. “A 3-dimensional Represen-
tation for Fast Rendering of Complex Scenes”. In: (1980), pp. 110–
116.

[36] Jörg Schmittler, Daniel Pohl, Tim Dahmen, Christian Vogelgesang,
and Philipp Slusallek. “Ray Tracing for Current and Future Games”.
In: Proceedings of 34. Jahrestagung der Gesellschaft für Informatik.
2004.

[37] Benjamin Segovia, Jean-Claude Iehl, Richard Mitanchey, and Bernard
Péroche. “Bidirectional Instant Radiosity”. In: Proceedings of the 17th
Eurographics Workshop on Rendering, to appear. 2006.

[38] Benjamin Segovia, Jean-Claude Iehl, and Bernard Péroche. “Metropo-
lis Instant Radiosity”. In: Proceedings of Eurographics 2007, to appear.
2007.

[39] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sug-
erman, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and
Pat Hanrahan. “Larrabee: A Many-Core x86 Architecture for Visual
Computing”. In: ACM SIGGRAPH 2008. 2008.

[40] Jeremy G. Siek and Andrew Lumsdaine. “A Modern Framework for
Portable High Performance Numerical Linear Algebra”. In: Modern
Software Tools for Scientific Computing. Birkhauser Boston Inc., 1997.

70 BIBLIOGRAPHY

[41] Bjarne Stroustrup. “Evolving a Language in and for the Real World:
C++ 1991-2006”. In: Proceedings of the third ACM SIGPLAN con-
ference on History of programming languages. San Diego, California:
ACM, 2007.

[42] Kalpathi R. Subramanian and Donald Fussel. A Search Structure Based
on K-D Tree Trees for Efficient Ray Tracing. Tech. rep. University of
Texas at Austin, 1990.

[43] Shreekant (Ticky) Thakkar and Tom Huff. “The Internet Streaming
SIMD Extensions”. In: Intel Technology Journal (1999).

[44] Eric Veach and Leonidas Guibas. “Bidirectional Estimators for Light
Transport”. In: 1994, pp. 147–162.

[45] Ingo Wald, Carsten Benthin, and Solomon Boulos. “Getting Rid of
Packets: Efficient SIMD Single-Ray Traversal using Multi-branching
BVHs”. In: (Aug. 2008).

[46] Ingo Wald, Carsten Benthin, Philipp Slusallek, and Michael Wagner.
“Interactive Rendering with Coherent Ray Tracing”. In: Computer
Graphics Forum 20(3) (2001), pp. 153–164.

[47] Ingo Wald, Solomon Boulos, and Peter Shirley. “Ray Tracing De-
formable Scenes Using Dynamic Bounding Volume Hierarchies”. In:
ACM Trans. Graph. 26.1 (2007), p. 6. issn: 0730-0301.

[48] Ingo Wald, Andreas Dietrich, Carsten Benthin, Alexander Efremov,
Tim Dahmen, Johannes Guenther, Vlastimil Havran, Hans-Peter Sei-
del, and Philipp Slusallek. “Applying Ray Tracing for Virtual Reality
and Industrial Design”. In: Proceedings of the 2006 IEEE Symposium
on Interactive Ray Tracing. Sept. 2006, pp. 177–185.

[49] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G.
Parker. “Ray Tracing Animated Scenes using Coherent Grid Traver-
sal”. In: ACM SIGGRAPH 2006 (2006).

[50] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and
Philipp Slusallek. “Interactive Global Illumination Using Fast Ray
Tracing”. In: EGRW ’02: Proceedings of the 13th Eurographics work-
shop on Rendering. Pisa, Italy: Eurographics Association, 2002, pp. 15–
24. isbn: 1-58113-534-3.

[51] Bruce Walter, Sebastian Fernandez, Adam Arbee, Kavita Bala, Michael
Donikian, and Donald Greenberg. “Lightcuts: A Scalable Approach to
Illumination”. In: ACM SIGGRAPH Conference Proceedings (2005).

[52] Turner Whitted. “An Improved Illumination Model for Shaded Dis-
play”. In: Communications of the ACM 23.6 (1980), pp. 343–349. issn:
0001-0782.

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Overview
	1.2 Thesis Outline

	2 Background
	2.1 Basic Models
	2.1.1 Camera
	2.1.2 Geometry
	2.1.3 Shading

	2.2 Rendering Algorithms
	2.2.1 Rasterization
	2.2.2 Ray Tracing
	2.2.3 Acceleration Structures for Ray Tracing

	2.3 Global Illumination with Ray Tracing
	2.4 Interactive Ray Tracing
	2.4.1 Packet Ray Tracing
	2.4.2 Frustum Culling for Packet Ray Tracing
	2.4.3 Interactive Global Illumination

	3 Ray Tracing Systems
	3.1 Basic Infrastructure
	3.2 Offline Ray Tracing Systems
	3.2.1 PBRT

	3.3 Interactive Ray Tracing Systems
	3.3.1 OpenRT
	3.3.2 Manta
	3.3.3 RTSL

	4 Design Considerations
	4.1 Flexibility Requirements
	4.2 Performance Requirements
	4.2.1 Parallelism
	4.2.2 Memory Bandwidth and Cache Utilization

	4.3 Flexibility vs. Performance
	4.4 Object-Oriented Design
	4.5 Domain-Specific Languages
	4.6 Generic Programming
	4.6.1 Class and Function Templates
	4.6.2 Concepts and Models

	5 Software Architecture
	5.1 SIMD Primitives
	5.1.1 Ray Packets

	5.2 Ray Tracing Components
	5.2.1 Primitives and Acceleration Structures
	5.2.2 Intersectors

	5.3 Scene Management and Acceleration Structure Building
	5.4 Rendering Components
	5.4.1 Shading Model
	5.4.2 Texturing

	5.5 Rendering Pipelines

	6 Applications
	6.1 Surface Ray Tracing
	6.1.1 Performance
	6.1.2 Shading Model Improvements

	6.2 Point-Based Ray Tracing
	6.3 Direct Volume Rendering
	6.4 A Note on Parallelism

	7 Conclusions
	7.1 Limitations
	7.2 Future Work

	Bibliography

